Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1388. doi: 10.1107/S1600536812015528

Propyl 2-(4-methyl­benzene­sulfonamido)­benzoate

Ghulam Mustafa a, Tahir Muhmood a, Islam Ullah Khan a, Mehmet Akkurt b,*
PMCID: PMC3344515  PMID: 22590277

Abstract

In the title compound, C17H19NO4S, the terminal ethyl group is disordered over two sets of sites, with refined site occupancies of 0.536 (7) and 0.464 (7). The dihedral angle between the two aromatic rings is 81.92 (12)°. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O and C—H⋯O hydrogen bonds, which generate S(6) motifs. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along the b axis.

Related literature  

For related structures, see: Mustafa et al. (2010, 2011, 2012); Khan et al. (2011). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1388-scheme1.jpg

Experimental  

Crystal data  

  • C17H19NO4S

  • M r = 333.40

  • Monoclinic, Inline graphic

  • a = 16.206 (5) Å

  • b = 8.513 (2) Å

  • c = 12.021 (3) Å

  • β = 92.352 (2)°

  • V = 1657.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.34 × 0.22 × 0.21 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 15110 measured reflections

  • 4039 independent reflections

  • 2343 reflections with I > 2σ(I)

  • R int = 0.071

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.178

  • S = 0.95

  • 4039 reflections

  • 209 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015528/hg5208sup1.cif

e-68-o1388-sup1.cif (27.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015528/hg5208Isup2.hkl

e-68-o1388-Isup2.hkl (198KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015528/hg5208Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.11 2.643 (3) 119
C10—H10⋯O1i 0.93 2.49 3.391 (3) 163
C9—H12⋯O2 0.93 2.36 3.027 (3) 128

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for financial support.

supplementary crystallographic information

Comment

As part of our ongoing studies of sulfonamides with potential biological properties (Mustafa et al., 2010, 2011, 2012; Khan et al., 2011), we now describe the title compound, propyl 2-{[(4-methylphenyl)sulfonyl]amino}benzoate, (I).

In the title molecule (I), (Fig. 1), the dihedral angle between the two benzene rings (C2—C7) and (C8—C13) is 81.92 (12)°. The C—S—N—C torsion angle is 61.6 (2)°. All the bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found for similar structures (Mustafa et al., 2010; 2011, 2012; Khan et al., 2011).

The molecular conformation of (I) is stabilized by intramolecular N—H···O and C—H···O hydrogen-bond interactions, generating S(6) motifs (Table 1). The crystal structure is stabilized by C—H···O hydrogen bonds, forming chains along the b axis (Table 1, Fig. 2).

Experimental

To an aqueous solution of o-amino benzoic acid (1.0 g, 7.3 mmol), sodium carbonate (1 N) was added to adjust the pH 8. Then p-toluenesulfonyl chloride (1.80 g, 9.48 mmol) was added and the mixture stirred at room temperature keeping the pH of the mixture up to 8.0 with occasional addition of sodium carbonate solution. Progress and completion of the reaction was confirmed by TLC and conversion of suspension into clear solution. After 2 h, whole mixture was poured into a beaker and the pH was adjusted to 2.0 by 1 N HCl. Precipitates were produced which were filtered and washed with distilled water.

The prepared sulfonamide (2-(Toluene-4-sulfonylamino)-benzoic acid) (1.0 g, 3.43 mmol), DMF (10 ml) and n-hexane washed sodium hydride (0.25 g, 10.31 mmol) were stirred at room temperature for 40 min followed by the addition of propyl iodide (0.76 g, 4.56 mmol). The whole reaction mixture was stirred till the completion of the reaction and poured into crushed ice in a beaker. The pH of the mixture was adjusted to 4.0 with 1 N HCl. Precipitates were produced, filtered, washed twice with distilled water and crystallized in chloroform.

Refinement

All H atoms were positioned with idealized geometry and were refined using a riding model with N—H = 0.86 Å, C—H = 0.93, 0.96 or 0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,N). The atoms of the terminal ethane group are disordered over two sets of sites, with refined site-occupancies of 0.536 (7): 0.464 (7). Five poorly fitted reflections (1 0 0), (-3 2 2), (8 0 2),(-3 6 1) and (-1 1 7) were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only the atoms of major disorder component are shown.

Fig. 2.

Fig. 2.

View of the hydrogen-bonding interactions of (I) along the c axis in the unit cell. Only the hydrogen atoms involved in hydrogen bonds (dotted lines) are drawn, for clarity.

Crystal data

C17H19NO4S F(000) = 704
Mr = 333.40 Dx = 1.337 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4265 reflections
a = 16.206 (5) Å θ = 2.5–23.7°
b = 8.513 (2) Å µ = 0.22 mm1
c = 12.021 (3) Å T = 296 K
β = 92.352 (2)° Needle, dark brown
V = 1657.0 (8) Å3 0.34 × 0.22 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2343 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.071
Graphite monochromator θmax = 28.3°, θmin = 2.5°
φ and ω scans h = −21→21
15110 measured reflections k = −11→9
4039 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1068P)2] where P = (Fo2 + 2Fc2)/3
4039 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.41 e Å3
4 restraints Δρmin = −0.37 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.80026 (4) 0.16805 (7) 0.29221 (4) 0.0584 (2)
O1 0.77925 (11) 0.32859 (19) 0.31033 (16) 0.0767 (7)
O2 0.81365 (11) 0.06631 (19) 0.38522 (12) 0.0750 (7)
O3 0.64329 (12) 0.1994 (2) 0.03046 (17) 0.0869 (8)
O4 0.59833 (12) 0.0193 (2) −0.09050 (17) 0.0942 (8)
N1 0.72438 (11) 0.1015 (2) 0.21272 (16) 0.0630 (7)
C1 1.10575 (19) 0.1688 (4) 0.0220 (3) 0.1018 (14)
C2 1.02933 (15) 0.1638 (3) 0.0893 (2) 0.0667 (9)
C3 0.96043 (17) 0.2539 (3) 0.0577 (2) 0.0722 (10)
C4 0.89084 (15) 0.2530 (3) 0.11718 (18) 0.0622 (8)
C5 0.88847 (13) 0.1625 (2) 0.21260 (16) 0.0501 (7)
C6 0.95491 (14) 0.0702 (3) 0.24444 (18) 0.0606 (8)
C7 1.02450 (15) 0.0731 (3) 0.1834 (2) 0.0718 (9)
C8 0.71875 (13) −0.0507 (2) 0.16566 (19) 0.0558 (7)
C9 0.75079 (16) −0.1809 (3) 0.2218 (2) 0.0696 (9)
C10 0.74210 (19) −0.3271 (3) 0.1755 (3) 0.0821 (11)
C11 0.70270 (19) −0.3495 (3) 0.0752 (3) 0.0795 (11)
C12 0.66964 (16) −0.2228 (3) 0.0188 (2) 0.0763 (10)
C13 0.67714 (13) −0.0703 (3) 0.0631 (2) 0.0594 (8)
C14 0.63951 (15) 0.0624 (4) 0.0015 (2) 0.0691 (10)
C15 0.5563 (2) 0.1421 (5) −0.1561 (3) 0.1144 (14)
C16A 0.5014 (6) 0.0493 (10) −0.2409 (6) 0.1144 (14) 0.536 (7)
C17A 0.4972 (7) 0.070 (2) −0.3449 (9) 0.131 (4) 0.536 (7)
C16B 0.5434 (6) 0.0897 (12) −0.2659 (7) 0.1144 (14) 0.464 (7)
C17B 0.4682 (7) 0.077 (3) −0.3096 (12) 0.131 (4) 0.464 (7)
H1 0.68400 0.16460 0.19800 0.0760*
H7 1.06970 0.01200 0.20630 0.0860*
H5 0.84520 0.31260 0.09390 0.0750*
H6 0.96210 0.31630 −0.00570 0.0870*
H11 0.69810 −0.44980 0.04490 0.0950*
H12 0.77820 −0.16880 0.29080 0.0830*
H13 0.64190 −0.23790 −0.04960 0.0920*
H14A 1.09050 0.15610 −0.05550 0.1530*
H14B 1.14240 0.08550 0.04550 0.1530*
H14C 1.13300 0.26800 0.03320 0.1530*
H15A 0.59570 0.20750 −0.19340 0.1370*
H15B 0.52310 0.20800 −0.10950 0.1370*
H16A 0.51600 −0.06020 −0.22990 0.1370* 0.536 (7)
H16B 0.44540 0.06040 −0.21660 0.1370* 0.536 (7)
H17A 0.44610 0.02730 −0.37500 0.1970* 0.536 (7)
H17B 0.54260 0.01780 −0.37790 0.1970* 0.536 (7)
H17C 0.49940 0.18030 −0.36090 0.1970* 0.536 (7)
H8 0.95270 0.00630 0.30700 0.0730*
H10 0.76380 −0.41340 0.21400 0.0980*
H16C 0.57360 0.15980 −0.31310 0.1370* 0.464 (7)
H16D 0.56910 −0.01290 −0.27080 0.1370* 0.464 (7)
H17D 0.46750 0.00200 −0.36910 0.1970* 0.464 (7)
H17E 0.45030 0.17760 −0.33810 0.1970* 0.464 (7)
H17F 0.43160 0.04330 −0.25350 0.1970* 0.464 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0714 (4) 0.0507 (4) 0.0533 (3) −0.0016 (3) 0.0056 (3) −0.0040 (2)
O1 0.0920 (13) 0.0510 (11) 0.0879 (12) 0.0020 (8) 0.0141 (10) −0.0185 (8)
O2 0.1016 (13) 0.0742 (12) 0.0496 (9) −0.0102 (9) 0.0074 (9) 0.0070 (8)
O3 0.0933 (14) 0.0751 (14) 0.0913 (13) 0.0160 (10) −0.0083 (11) 0.0078 (11)
O4 0.0951 (14) 0.1008 (16) 0.0846 (12) −0.0095 (11) −0.0226 (11) 0.0158 (11)
N1 0.0598 (11) 0.0503 (12) 0.0785 (13) 0.0065 (9) −0.0010 (9) −0.0059 (10)
C1 0.0773 (19) 0.131 (3) 0.099 (2) −0.0341 (17) 0.0251 (17) −0.043 (2)
C2 0.0646 (15) 0.0729 (17) 0.0628 (14) −0.0159 (12) 0.0046 (11) −0.0227 (13)
C3 0.0886 (19) 0.0786 (18) 0.0495 (12) −0.0142 (14) 0.0033 (12) 0.0045 (12)
C4 0.0723 (15) 0.0624 (15) 0.0515 (12) 0.0043 (11) −0.0038 (11) 0.0084 (10)
C5 0.0618 (12) 0.0434 (12) 0.0444 (10) −0.0025 (9) −0.0060 (9) −0.0020 (8)
C6 0.0729 (15) 0.0562 (14) 0.0519 (12) 0.0057 (11) −0.0061 (11) 0.0017 (10)
C7 0.0651 (15) 0.0727 (18) 0.0768 (16) 0.0088 (12) −0.0077 (13) −0.0115 (13)
C8 0.0532 (12) 0.0477 (13) 0.0668 (13) −0.0045 (10) 0.0077 (10) −0.0013 (10)
C9 0.0758 (16) 0.0529 (15) 0.0792 (16) −0.0033 (12) −0.0070 (13) 0.0034 (12)
C10 0.0897 (19) 0.0503 (16) 0.106 (2) 0.0007 (13) 0.0017 (17) 0.0060 (14)
C11 0.0877 (19) 0.0483 (16) 0.103 (2) −0.0054 (13) 0.0099 (16) −0.0103 (14)
C12 0.0714 (17) 0.0787 (19) 0.0791 (17) −0.0157 (14) 0.0054 (13) −0.0180 (15)
C13 0.0514 (12) 0.0585 (15) 0.0687 (14) −0.0042 (10) 0.0088 (10) −0.0021 (11)
C14 0.0604 (14) 0.0755 (19) 0.0714 (16) −0.0047 (13) 0.0026 (12) 0.0028 (13)
C15 0.092 (2) 0.142 (3) 0.107 (2) −0.0034 (17) −0.0213 (17) 0.043 (2)
C16A 0.092 (2) 0.142 (3) 0.107 (2) −0.0034 (17) −0.0213 (17) 0.043 (2)
C17A 0.090 (7) 0.188 (6) 0.116 (7) −0.010 (7) 0.012 (4) 0.050 (7)
C16B 0.092 (2) 0.142 (3) 0.107 (2) −0.0034 (17) −0.0213 (17) 0.043 (2)
C17B 0.090 (7) 0.188 (6) 0.116 (7) −0.010 (7) 0.012 (4) 0.050 (7)

Geometric parameters (Å, º)

S1—O1 1.4273 (18) C16A—C17A 1.262 (13)
S1—O2 1.4239 (17) C16B—C17B 1.312 (15)
S1—N1 1.628 (2) C1—H14A 0.9600
S1—C5 1.753 (2) C1—H14B 0.9600
O3—C14 1.218 (4) C1—H14C 0.9600
O4—C14 1.320 (3) C3—H6 0.9300
O4—C15 1.461 (4) C4—H5 0.9300
N1—C8 1.415 (3) C6—H8 0.9300
N1—H1 0.8600 C7—H7 0.9300
C1—C2 1.507 (4) C9—H12 0.9300
C2—C3 1.395 (4) C10—H10 0.9300
C2—C7 1.375 (3) C11—H11 0.9300
C3—C4 1.360 (4) C12—H13 0.9300
C4—C5 1.384 (3) C15—H15A 0.9700
C5—C6 1.375 (3) C15—H15B 0.9700
C6—C7 1.371 (3) C16A—H16A 0.9700
C8—C9 1.387 (3) C16A—H16B 0.9700
C8—C13 1.391 (3) C16B—H16C 0.9700
C9—C10 1.368 (4) C16B—H16D 0.9700
C10—C11 1.355 (5) C17A—H17C 0.9600
C11—C12 1.371 (4) C17A—H17A 0.9600
C12—C13 1.407 (4) C17A—H17B 0.9600
C13—C14 1.470 (4) C17B—H17D 0.9600
C15—C16A 1.543 (9) C17B—H17E 0.9600
C15—C16B 1.401 (9) C17B—H17F 0.9600
O1—S1—O2 119.49 (11) C4—C3—H6 119.00
O1—S1—N1 104.10 (10) C3—C4—H5 120.00
O1—S1—C5 108.30 (10) C5—C4—H5 120.00
O2—S1—N1 109.66 (10) C5—C6—H8 120.00
O2—S1—C5 108.11 (10) C7—C6—H8 120.00
N1—S1—C5 106.47 (10) C2—C7—H7 119.00
C14—O4—C15 117.5 (2) C6—C7—H7 119.00
S1—N1—C8 126.02 (15) C8—C9—H12 120.00
C8—N1—H1 117.00 C10—C9—H12 120.00
S1—N1—H1 117.00 C9—C10—H10 119.00
C1—C2—C7 122.2 (2) C11—C10—H10 119.00
C1—C2—C3 120.3 (2) C10—C11—H11 120.00
C3—C2—C7 117.5 (2) C12—C11—H11 120.00
C2—C3—C4 121.7 (2) C11—C12—H13 120.00
C3—C4—C5 119.4 (2) C13—C12—H13 120.00
C4—C5—C6 120.1 (2) O4—C15—H15A 111.00
S1—C5—C4 119.24 (16) O4—C15—H15B 111.00
S1—C5—C6 120.69 (15) C16A—C15—H15A 111.00
C5—C6—C7 119.5 (2) C16A—C15—H15B 111.00
C2—C7—C6 121.8 (2) H15A—C15—H15B 109.00
N1—C8—C13 119.02 (19) C16B—C15—H15A 80.00
N1—C8—C9 121.4 (2) C16B—C15—H15B 132.00
C9—C8—C13 119.6 (2) C15—C16A—H16A 106.00
C8—C9—C10 119.9 (2) C15—C16A—H16B 106.00
C9—C10—C11 121.8 (3) C17A—C16A—H16A 106.00
C10—C11—C12 119.3 (2) C17A—C16A—H16B 106.00
C11—C12—C13 120.9 (2) H16A—C16A—H16B 106.00
C12—C13—C14 119.4 (2) C15—C16B—H16D 107.00
C8—C13—C12 118.5 (2) C17B—C16B—H16C 107.00
C8—C13—C14 122.0 (2) C17B—C16B—H16D 107.00
O4—C14—C13 113.2 (3) H16C—C16B—H16D 107.00
O3—C14—O4 121.6 (3) C15—C16B—H16C 107.00
O3—C14—C13 125.3 (2) H17A—C17A—H17C 109.00
O4—C15—C16A 103.5 (4) H17B—C17A—H17C 110.00
O4—C15—C16B 109.2 (5) C16A—C17A—H17A 109.00
C15—C16A—C17A 126.1 (9) C16A—C17A—H17B 110.00
C15—C16B—C17B 120.3 (10) C16A—C17A—H17C 110.00
C2—C1—H14A 109.00 H17A—C17A—H17B 109.00
C2—C1—H14B 109.00 C16B—C17B—H17D 110.00
C2—C1—H14C 109.00 C16B—C17B—H17E 109.00
H14A—C1—H14B 110.00 C16B—C17B—H17F 110.00
H14A—C1—H14C 109.00 H17D—C17B—H17E 109.00
H14B—C1—H14C 109.00 H17D—C17B—H17F 110.00
C2—C3—H6 119.00 H17E—C17B—H17F 109.00
O1—S1—N1—C8 175.93 (18) C3—C4—C5—S1 177.35 (18)
O2—S1—N1—C8 −55.1 (2) C4—C5—C6—C7 2.5 (3)
C5—S1—N1—C8 61.6 (2) S1—C5—C6—C7 −177.21 (18)
O1—S1—C5—C4 −48.9 (2) C5—C6—C7—C2 −1.3 (4)
O2—S1—C5—C4 −179.66 (17) N1—C8—C13—C14 0.6 (3)
N1—S1—C5—C4 62.58 (19) C9—C8—C13—C12 −0.7 (3)
O1—S1—C5—C6 130.81 (18) C9—C8—C13—C14 177.9 (2)
O2—S1—C5—C6 0.0 (2) C13—C8—C9—C10 0.7 (4)
N1—S1—C5—C6 −117.76 (18) N1—C8—C13—C12 −178.0 (2)
C15—O4—C14—O3 −0.8 (4) N1—C8—C9—C10 178.0 (2)
C15—O4—C14—C13 178.1 (2) C8—C9—C10—C11 0.0 (4)
C14—O4—C15—C16A −168.8 (4) C9—C10—C11—C12 −0.8 (5)
S1—N1—C8—C9 34.1 (3) C10—C11—C12—C13 0.9 (4)
S1—N1—C8—C13 −148.64 (18) C11—C12—C13—C14 −178.8 (2)
C3—C2—C7—C6 0.1 (4) C11—C12—C13—C8 −0.1 (4)
C1—C2—C3—C4 −179.4 (3) C8—C13—C14—O3 2.9 (4)
C1—C2—C7—C6 179.6 (3) C8—C13—C14—O4 −175.9 (2)
C7—C2—C3—C4 0.1 (4) C12—C13—C14—O3 −178.5 (2)
C2—C3—C4—C5 1.1 (4) C12—C13—C14—O4 2.7 (3)
C3—C4—C5—C6 −2.3 (3) O4—C15—C16A—C17A −129.7 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3 0.86 2.11 2.643 (3) 119
C6—H8···O2 0.93 2.53 2.902 (3) 104
C10—H10···O1i 0.93 2.49 3.391 (3) 163
C9—H12···O2 0.93 2.36 3.027 (3) 128
C12—H13···O4 0.93 2.35 2.681 (3) 101

Symmetry code: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5208).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Khan, I. U., Mustafa, G. & Akkurt, M. (2011). Acta Cryst. E67, o1857. [DOI] [PMC free article] [PubMed]
  7. Mustafa, G., Akkurt, M., Khan, I. U., Naseem, R. & Sajjad, B. (2010). Acta Cryst. E66, o1768. [DOI] [PMC free article] [PubMed]
  8. Mustafa, G., Khan, I. U., Khan, F. M. & Akkurt, M. (2012). Acta Cryst. E68, o1305. [DOI] [PMC free article] [PubMed]
  9. Mustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015528/hg5208sup1.cif

e-68-o1388-sup1.cif (27.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015528/hg5208Isup2.hkl

e-68-o1388-Isup2.hkl (198KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015528/hg5208Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES