Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 13;68(Pt 5):o1389. doi: 10.1107/S1600536812015127

(R)-N-(Biphenyl-4-yl)-tert-butane­sulfinamide

Binbin Zhang a, Yan Wang a, Xiaofei Sun a, Wenguo Wang b, Qingle Zeng a,*
PMCID: PMC3344516  PMID: 22590278

Abstract

In the title compound, C16H19NOS, the dihedral angle between the two aromatic rings is 38.98 (8)°. The crystal structure is stabilized by N—H⋯O hydrogen bonds, which link neighbouring mol­ecules into chains running parallel to the a axis.

Related literature  

For related structures, see: Sun et al. (2012); Jasinski et al. (2012); Gainsford et al. (2011).graphic file with name e-68-o1389-scheme1.jpg

Experimental  

Crystal data  

  • C16H19NOS

  • M r = 273.38

  • Orthorhombic, Inline graphic

  • a = 9.3588 (5) Å

  • b = 11.9452 (5) Å

  • c = 13.3136 (7) Å

  • V = 1488.36 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.43 × 0.41 × 0.40 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.988, T max = 1.000

  • 3983 measured reflections

  • 2766 independent reflections

  • 2325 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.097

  • S = 1.06

  • 2766 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: assigned from the known absolute structure of the (R)-tert-butanesulfinamide starting material; the Flack (1983) parameter is consistent with this assignment, 1017 Friedel pairs

  • Flack parameter: 0.03 (10)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015127/rz2735sup1.cif

e-68-o1389-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015127/rz2735Isup2.hkl

e-68-o1389-Isup2.hkl (135.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015127/rz2735Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812015127/rz2735Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.35 3.144 (3) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Sci-Tech Bureau of Sichuan (No. 2011HH0016), the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2012K005) and the Cultivating Programme for the Excellent Innovation Team of Chengdu University of Technology (No. HY0084) for financial support.

supplementary crystallographic information

Comment

Sulfinamides, especially chiral sulfinamides, are an important class of organic compounds in modern organic chemistry, and a great number of such compounds have been synthesized. In our continuous study on chiral N-aryl-tert-butanesulfinamides (Sun et al., 2012), we have prepared the title compound and report its crystal structure herein.

In the molecule of the title compound (Fig. 1) the aromatic rings of the biphenyl are tilted to form a dihedral angle of 38.98 (8)°, which is comparable to the value observed in other related compounds containing the biphenyl group (Jasinski et al., 2012; Gainsford et al., 2011). In the crystal packing (Fig. 2), the molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) into one-dimensional chains running parallel to the the a axis.

Experimental

A oven-dried ground test tube, which was equipped with a magnetic stir bar and fitted with a rubber septum, was charged with (R)-tert-butanesulfinamide (0.121 g, 1.0 mmol), Pd2(dba)3 (0.018 g, 0.02 mmol; dba is dibenzylideneacetone), 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl (0.0212 g, 0.05 mmol) and NaOH (0.08 g, 2 mmol). The vessel was evacuated and backfilled with argon three times, then 4-biphenyl bromide (1.3 mmol), toluene (10 ml) and degassed water (0.3 ml) were added via syringe. The solution was stirred at 90°C for 20 h. The reaction mixture was then cooled to room temperature, quenched by water, and extracted with chloroform (20 ml) for twice. The organic layers were combined, and dried over anhydrous sodium sulfate and filtrated. The filterate was condensed under vacuum. The residual was purified with silica gel column chromatography with a solution of petroleum ether and ethyl acetate (5:1 v/v) as eluent to give the title compound (R)-N-(4-biphenyl)-tert-butanesulfinamide. A test tube containing a petroleum ether and ethyl acetate (1:1 v/v) solution of the title compound was covered with a piece of filter paper and placed motionless at room temperature, and a single-crystal was cultured in the bottom of the test tube. Spectroscopic analysis: 1H NMR (300 MHz, CDCl3), δ (ppm): 7.49–7.29 (m, 7H), 7.06 (d, J = 8.5 Hz, 2H), 6.03 (d, J = 3.9 Hz, 1H), 1.37 (s, 9H). 13C NMR (300 MHz, CDCl3), δ (ppm): 114.6, 140.4, 135.6, 128.6, 127.9, 126.8, 126.6, 118.4, 56.5, 22.4. FT—IR (KBr) (cm-1): 3453, 3252, 2926, 1610, 1519, 1485, 1386, 1305, 1286, 1268, 1228, 1191, 1057, 912, 880, 838, 767. [α]D = -110.8 (c 0.15, ethyl acetate). ESI-MS (negative mode), m/z = 272 [M—H]-. Anal. Calcd for C16H19NOS: C, 70.29; H, 7.00; N, 5.12. Found: C, 70.43; H, 7.16; N 5.01.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å, C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The one-dimensional structure of (I) in the crystal packing, showing intermolecular hydrogen bonding as dashed lines.

Crystal data

C16H19NOS Dx = 1.220 Mg m3
Mr = 273.38 Melting point: 427 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2ab Cell parameters from 1425 reflections
a = 9.3588 (5) Å θ = 3.1–28.9°
b = 11.9452 (5) Å µ = 0.21 mm1
c = 13.3136 (7) Å T = 293 K
V = 1488.36 (12) Å3 Block, colourless
Z = 4 0.43 × 0.41 × 0.40 mm
F(000) = 584

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2766 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2325 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
Detector resolution: 16.0874 pixels mm-1 θmax = 26.4°, θmin = 3.1°
ω scans h = −11→5
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −7→14
Tmin = 0.988, Tmax = 1.000 l = −16→16
3983 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.0448P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2766 reflections Δρmax = 0.19 e Å3
175 parameters Δρmin = −0.22 e Å3
0 restraints Absolute structure: assigned from the known absolute structure of the (R)-tert-butanesulfinamide starting material; the Flack (1983) parameter is consistent with this assignment, 1017 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.03 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.15256 (8) −0.31264 (5) −0.40407 (5) 0.04256 (19)
O1 −0.2124 (3) −0.22979 (16) −0.47627 (16) 0.0639 (7)
N1 −0.0065 (3) −0.36901 (17) −0.45167 (18) 0.0488 (7)
H1 0.0702 −0.3294 −0.4536 0.059*
C1 −0.0021 (3) −0.4790 (2) −0.48927 (19) 0.0355 (6)
C2 −0.1153 (3) −0.5532 (2) −0.4810 (2) 0.0415 (7)
H2 −0.1987 −0.5318 −0.4482 0.050*
C3 −0.1032 (3) −0.6600 (2) −0.5220 (2) 0.0400 (7)
H3 −0.1801 −0.7090 −0.5166 0.048*
C4 0.0197 (3) −0.6959 (2) −0.57082 (17) 0.0357 (6)
C5 0.1315 (3) −0.6196 (2) −0.5777 (2) 0.0395 (6)
H5 0.2149 −0.6404 −0.6107 0.047*
C6 0.1217 (3) −0.5131 (2) −0.5366 (2) 0.0423 (7)
H6 0.1990 −0.4644 −0.5410 0.051*
C7 0.0310 (3) −0.8089 (2) −0.61585 (18) 0.0377 (6)
C8 −0.0253 (3) −0.9024 (2) −0.5693 (2) 0.0476 (8)
H8 −0.0694 −0.8944 −0.5071 0.057*
C9 −0.0181 (4) −1.0075 (2) −0.6126 (2) 0.0558 (8)
H9 −0.0581 −1.0688 −0.5801 0.067*
C10 0.0480 (4) −1.0208 (3) −0.7031 (3) 0.0600 (9)
H10 0.0535 −1.0914 −0.7324 0.072*
C11 0.1060 (3) −0.9301 (3) −0.7507 (2) 0.0586 (9)
H11 0.1514 −0.9395 −0.8122 0.070*
C12 0.0980 (3) −0.8240 (2) −0.7081 (2) 0.0471 (7)
H12 0.1375 −0.7630 −0.7414 0.057*
C13 −0.0712 (3) −0.2310 (2) −0.3024 (2) 0.0461 (7)
C14 −0.1958 (4) −0.1746 (3) −0.2498 (2) 0.0769 (12)
H14A −0.2385 −0.1207 −0.2941 0.115*
H14B −0.1622 −0.1375 −0.1903 0.115*
H14C −0.2656 −0.2299 −0.2316 0.115*
C15 −0.0002 (6) −0.3136 (3) −0.2314 (3) 0.0911 (14)
H15A −0.0670 −0.3713 −0.2138 0.137*
H15B 0.0301 −0.2752 −0.1718 0.137*
H15C 0.0812 −0.3465 −0.2639 0.137*
C16 0.0316 (4) −0.1448 (2) −0.3427 (3) 0.0670 (10)
H16A 0.1088 −0.1818 −0.3767 0.100*
H16B 0.0690 −0.1013 −0.2880 0.100*
H16C −0.0173 −0.0965 −0.3889 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0340 (4) 0.0355 (3) 0.0581 (4) 0.0019 (3) −0.0013 (4) −0.0073 (4)
O1 0.0696 (17) 0.0521 (12) 0.0701 (14) 0.0165 (12) −0.0276 (13) −0.0088 (11)
N1 0.0381 (15) 0.0330 (11) 0.0754 (16) −0.0062 (11) 0.0102 (13) −0.0137 (11)
C1 0.0374 (16) 0.0289 (13) 0.0403 (14) 0.0022 (12) −0.0009 (13) −0.0009 (11)
C2 0.0343 (16) 0.0364 (14) 0.0538 (16) 0.0000 (13) 0.0130 (14) −0.0031 (13)
C3 0.0377 (16) 0.0319 (14) 0.0505 (16) −0.0043 (12) 0.0086 (14) −0.0013 (12)
C4 0.0386 (15) 0.0326 (12) 0.0360 (13) 0.0026 (13) −0.0008 (12) 0.0012 (12)
C5 0.0306 (15) 0.0389 (13) 0.0488 (16) 0.0043 (12) 0.0058 (14) −0.0017 (13)
C6 0.0363 (17) 0.0353 (14) 0.0552 (17) −0.0038 (13) 0.0004 (14) −0.0009 (13)
C7 0.0333 (14) 0.0373 (13) 0.0423 (14) 0.0061 (13) −0.0057 (12) −0.0024 (13)
C8 0.0546 (19) 0.0393 (14) 0.0488 (17) −0.0007 (15) 0.0038 (16) −0.0023 (13)
C9 0.063 (2) 0.0360 (14) 0.068 (2) −0.0014 (16) −0.0094 (19) −0.0060 (15)
C10 0.054 (2) 0.0503 (18) 0.075 (2) 0.0092 (17) −0.021 (2) −0.0296 (18)
C11 0.046 (2) 0.073 (2) 0.0567 (19) 0.0086 (19) −0.0018 (16) −0.0280 (18)
C12 0.0446 (18) 0.0491 (16) 0.0477 (16) 0.0017 (15) −0.0003 (15) −0.0044 (15)
C13 0.0484 (19) 0.0452 (15) 0.0447 (16) 0.0038 (14) −0.0030 (15) −0.0074 (14)
C14 0.075 (3) 0.085 (3) 0.070 (2) 0.006 (2) 0.014 (2) −0.030 (2)
C15 0.125 (4) 0.076 (2) 0.073 (2) 0.018 (3) −0.036 (3) −0.002 (2)
C16 0.065 (2) 0.0593 (19) 0.077 (2) −0.0194 (18) 0.001 (2) −0.0224 (18)

Geometric parameters (Å, º)

S1—O1 1.489 (2) C9—H9 0.9300
S1—N1 1.650 (2) C9—C10 1.364 (4)
S1—C13 1.833 (3) C10—H10 0.9300
N1—H1 0.8600 C10—C11 1.367 (4)
N1—C1 1.407 (3) C11—H11 0.9300
C1—C2 1.385 (3) C11—C12 1.391 (4)
C1—C6 1.381 (4) C12—H12 0.9300
C2—H2 0.9300 C13—C14 1.519 (4)
C2—C3 1.393 (3) C13—C15 1.519 (4)
C3—H3 0.9300 C13—C16 1.508 (4)
C3—C4 1.389 (4) C14—H14A 0.9600
C4—C5 1.390 (4) C14—H14B 0.9600
C4—C7 1.481 (3) C14—H14C 0.9600
C5—H5 0.9300 C15—H15A 0.9600
C5—C6 1.388 (3) C15—H15B 0.9600
C6—H6 0.9300 C15—H15C 0.9600
C7—C8 1.381 (4) C16—H16A 0.9600
C7—C12 1.390 (4) C16—H16B 0.9600
C8—H8 0.9300 C16—H16C 0.9600
C8—C9 1.383 (4)
O1—S1—N1 109.58 (13) C9—C10—H10 120.1
O1—S1—C13 106.21 (12) C9—C10—C11 119.8 (3)
N1—S1—C13 99.00 (13) C11—C10—H10 120.1
S1—N1—H1 118.6 C10—C11—H11 119.6
C1—N1—S1 122.8 (2) C10—C11—C12 120.8 (3)
C1—N1—H1 118.6 C12—C11—H11 119.6
C2—C1—N1 123.1 (3) C7—C12—C11 120.2 (3)
C6—C1—N1 117.5 (2) C7—C12—H12 119.9
C6—C1—C2 119.3 (2) C11—C12—H12 119.9
C1—C2—H2 120.2 C14—C13—S1 105.0 (2)
C1—C2—C3 119.5 (3) C14—C13—C15 109.7 (3)
C3—C2—H2 120.2 C15—C13—S1 107.2 (2)
C2—C3—H3 118.9 C16—C13—S1 111.5 (2)
C4—C3—C2 122.2 (3) C16—C13—C14 110.6 (3)
C4—C3—H3 118.9 C16—C13—C15 112.6 (3)
C3—C4—C5 116.8 (2) C13—C14—H14A 109.5
C3—C4—C7 122.0 (2) C13—C14—H14B 109.5
C5—C4—C7 121.2 (2) C13—C14—H14C 109.5
C4—C5—H5 119.1 H14A—C14—H14B 109.5
C6—C5—C4 121.7 (3) H14A—C14—H14C 109.5
C6—C5—H5 119.1 H14B—C14—H14C 109.5
C1—C6—C5 120.4 (3) C13—C15—H15A 109.5
C1—C6—H6 119.8 C13—C15—H15B 109.5
C5—C6—H6 119.8 C13—C15—H15C 109.5
C8—C7—C4 121.9 (2) H15A—C15—H15B 109.5
C8—C7—C12 117.6 (2) H15A—C15—H15C 109.5
C12—C7—C4 120.5 (2) H15B—C15—H15C 109.5
C7—C8—H8 119.1 C13—C16—H16A 109.5
C7—C8—C9 121.9 (3) C13—C16—H16B 109.5
C9—C8—H8 119.1 C13—C16—H16C 109.5
C8—C9—H9 120.1 H16A—C16—H16B 109.5
C10—C9—C8 119.8 (3) H16A—C16—H16C 109.5
C10—C9—H9 120.1 H16B—C16—H16C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.35 3.144 (3) 154

Symmetry code: (i) x+1/2, −y−1/2, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2735).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Gainsford, G. J., Ashraf, M. & Kay, A. J. (2011). Acta Cryst. E67, o893. [DOI] [PMC free article] [PubMed]
  4. Jasinski, J. P., Golen, J. A., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, o362–o363. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sun, X., Dai, C., Tu, X., Wang, W. & Zeng, Q. (2012). Acta Cryst. E68, o773. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015127/rz2735sup1.cif

e-68-o1389-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015127/rz2735Isup2.hkl

e-68-o1389-Isup2.hkl (135.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015127/rz2735Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812015127/rz2735Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES