Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1396. doi: 10.1107/S1600536812014985

1-Eth­oxy­methyl-5-methyl-9-phenyl-6,7,8,9-tetra­hydro-1H-pyrimido[4,5-b][1,4]diazepine-2,4(3H,5H)-dione

Gong Li a, Xiaowei Wang a, Zhili Zhang a, Junyi Liu a,*
PMCID: PMC3344522  PMID: 22590284

Abstract

The title compound, C17H22N4O3, comprises a 1,4-diazepine ring in a twist-boat conformation fused to a pyrimidine ring. The dihedral angle between the pyrimidine and phenyl rings is 80.8 (1)°. The crystal packing features N—H⋯O and C—H⋯O hydrogen bonds.

Related literature  

For the preparation of 2,4-dimeth­oxy-5-methyl-9-phenyl-8,9-dihydro-5H- pyrimido[4,5-b][1,4]diazepin-6(7H), see: Li et al. (2012). For the biological activity of compounds with a pyrimidodiazepine scaffold, see: Ferreira et al. (2009); Gracias et al. (2008); Insuasty et al. (2008); Chen et al. (2012). The title compound was obtained during work on the structural modification of our previously reported HIV-1 reverse transcriptase inhibitor, see: Wang et al. (2006).graphic file with name e-68-o1396-scheme1.jpg

Experimental  

Crystal data  

  • C17H22N4O3

  • M r = 330.39

  • Monoclinic, Inline graphic

  • a = 13.831 (3) Å

  • b = 8.9904 (18) Å

  • c = 14.978 (3) Å

  • β = 112.79 (3)°

  • V = 1717.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.30 mm

Data collection  

  • Rigaku R-AXIS RAPID IPdiffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.965, T max = 0.974

  • 7151 measured reflections

  • 3921 independent reflections

  • 1601 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.079

  • wR(F 2) = 0.250

  • S = 0.86

  • 3921 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014985/kp2397sup1.cif

e-68-o1396-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014985/kp2397Isup2.hkl

e-68-o1396-Isup2.hkl (192.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014985/kp2397Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812014985/kp2397Isup4.cdx

Supplementary material file. DOI: 10.1107/S1600536812014985/kp2397Isup5.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.95 (4) 1.91 (4) 2.862 (4) 175 (3)
C13—H13⋯O1ii 0.93 2.49 3.397 (5) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China. We also express our appreciation to Mr Wenxiong Zhang and Nengdong Wang for helping in the resolution of the title compound.

supplementary crystallographic information

Comment

The title compound (Fig. 1) belongs to a class having pyrimidodiazepine scaffold which in recent years has exhibited a range of biological activities such as antitumor agents (Insuasty et al., 2008; Chen et al., 2012), HIV-integrase inhibitors (Ferreira et al., 2009) and receptor tyrosine kinase inhibitors (Gracias et al., 2008). The title compound is gained during the structural modification work of our previously reported HIV-1 reverse transcriptase inhibitor (Wang et al., 2006). The main goal of this modification is to enhance the physicochemical properties and the flexibility of the seven-membered ring fused to the pyrimidine ring.

In the title compound, the dihedral angle between the phenyl ring and the pyrimidine ring is 80.8 (1)°. The diazepine ring exhibits a twist-boat conformation. To make a clear description of this boat conformation, the C4, C6, N3 and N4 atoms are regarded as coplanar, so that the C2, C7 and C5 atoms lie at the same side of the plane.

In the crystal structure, the molecules are linked by an intermolecular hydrogen bond [N1-H···O 2.862 (4) and C13-H···O1 3.397 (5)Å] (Table 1, Fig. 2).

Experimental

The important intermediate 2,4-dimethoxy-5-methyl-9-phenyl-8,9-dihydro-5H- pyrimido[4,5-b][1,4]diazepin-6(7H)-one was prepared according to our procedure (Li et al., 2012). To a suspension of LiAlH4 (13 mg, 0.34 mmol, 2 equiv) in dry Et2O (15 mL) the above-mentioned intermediate lactam (0.17 mmol) was slowly added. Then the mixture was refluxed for 15 min, monitored by TLC. The mixture was cooled to rt, and quenched with a minimum amount of saturated aqueous sodium sulfate solution. Then the mixture was diluted with EtOAc, washed with brine. The organic layer was dried over anhydrous Na2SO4 and concentrated in vacuo to give a yellow oil. This was purified by column chromatograpy on silica gel. Elution with solvent mixture petroleum ether: EtOAc = 7: 1 gave the 2,4-dimethoxy-5-methyl-9-phenyl-6,7,8,9-tetrahydro-5H-pyrimido[4,5-b][1,4]diazepine in 76% yield. The reduction product (70 mg, 0.23 mmol) was dissolved in THF (25 mL) at room temperature and then concentrated hydrochloric acid (0.5 mL) was added. The mixture was refluxed for 8 h and monitored by TLC. Then the mixture was neutralised by saturated sodium bicarbonate solution and extracted twice with EtOAc (20 mL). The combined organic fractions were washed with brine, dried over anhydrous Na2SO4 and concentrated. Then recrystallization from MeOH/EtOAc/petroleum ether gave the colourless crystal product 43 mg, in 73% yield. To a suspension of the corresponding uracil (0.1 mmol) in chloroform (2 mL) N,O-bis(trimethylsilyl)acetamide (BSA) (0.25 mmol, 2.5equiv) was added and the stirring was continued until a clear solution was observed. Then chloromethyl ethyl ether (0.13 mmol) was added and the reaction mixture was stirred until no change in amount of the starting material. The reaction was quenched with a saturated solution of NaHCO3 and extracted twice with CHCl3 (10 mL). The combined organic fractions were washed with brine, dried over anhydrous Na2SO4 and concentrated in vacuo to give a yellow oil. This was purified by a thin layer chromatograpy on silica gel. Developing with dichloromethane: MeOH = 50: 1 gave the pure title compound in 69% yield. Then recrystallization from EtOAc/petroleum ether gave the colourless crystal. 1H NMR (400 MHz, CDCl3) δ 8.72 (s, 1H), 7.31 (t, J = 7.6 Hz,2H), 6.96 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.6 Hz, 2H), 4.93 (s, 2H),3.77 (br s, 2H), 3.47 (q, J = 7.2 Hz, 2H), 3.01 (t, J = 5.6 Hz, 2H), 2.81(s, 3H), 1.89 (t, J = 5.6 Hz, 2H),1.11 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 162.14, 151.14, 145.05, 129.81, 121.32, 116.09, 72.96, 64.80, 51.25, 48.93,39.79, 23.01, 15.03. Anal. Calcd. for C17H22N4O3: C, 61.80; H, 6.71; N, 16. 96. Found: C, 61.71; H, 6.616; N, 17.00.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å for aryl, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms, N—H = 0.93 Å. Uiso(H) = 1.5Ueq(C) for the methyl groups, 1.2Ueq(C) for methylene, and 0.07Ueq(N).

Figures

Fig. 1.

Fig. 1.

A view of compound (I), showing the atom-labelling scheme. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Fig. 2.

Fig. 2.

The packing of (I), viewed down the b axis. The intermolecular hydrogen bonds are denoted by dashed lines.

Crystal data

C17H22N4O3 F(000) = 704
Mr = 330.39 Dx = 1.278 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 13.831 (3) Å θ = 2.6–27.5°
b = 8.9904 (18) Å µ = 0.09 mm1
c = 14.978 (3) Å T = 298 K
β = 112.79 (3)° Block, colourless
V = 1717.1 (6) Å3 0.40 × 0.30 × 0.30 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer 3921 independent reflections
Radiation source: fine-focus sealed tube 1601 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 10.00 pixels mm-1 θmax = 27.5°, θmin = 2.6°
Ω scans h = −17→17
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −11→11
Tmin = 0.965, Tmax = 0.974 l = −19→19
7151 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.250 w = 1/[σ2(Fo2) + (0.151P)2] where P = (Fo2 + 2Fc2)/3
S = 0.86 (Δ/σ)max = 0.004
3921 reflections Δρmax = 0.70 e Å3
218 parameters Δρmin = −0.59 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.062 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3598 (3) 0.0927 (4) 0.1226 (2) 0.0529 (8)
C2 0.3869 (3) 0.1940 (4) 0.2044 (2) 0.0509 (8)
C3 0.2088 (3) 0.2532 (6) 0.1902 (3) 0.1021 (16)
H3A 0.2026 0.2844 0.1269 0.153*
H3B 0.1855 0.3317 0.2205 0.153*
H3C 0.1665 0.1664 0.1847 0.153*
C4 0.3437 (4) 0.1949 (5) 0.3481 (3) 0.0979 (15)
H4A 0.3072 0.1067 0.3558 0.118*
H4B 0.3181 0.2784 0.3738 0.118*
C5 0.4578 (4) 0.1761 (5) 0.4074 (3) 0.0916 (15)
H5A 0.4665 0.1515 0.4731 0.110*
H5B 0.4834 0.0925 0.3820 0.110*
C6 0.5239 (4) 0.3082 (5) 0.4105 (3) 0.0927 (15)
H6A 0.5043 0.3886 0.4433 0.111*
H6B 0.5966 0.2836 0.4485 0.111*
C7 0.4813 (3) 0.2614 (3) 0.2368 (2) 0.0481 (8)
C8 0.5306 (3) 0.1445 (4) 0.1140 (2) 0.0540 (9)
C9 0.6648 (3) 0.2706 (4) 0.2460 (2) 0.0624 (10)
H9A 0.7025 0.2656 0.2034 0.075*
H9B 0.6723 0.3699 0.2732 0.075*
C10 0.7968 (4) 0.1714 (8) 0.3765 (4) 0.1291 (15)
H10A 0.8076 0.2688 0.4067 0.155*
H10B 0.8390 0.1673 0.3377 0.155*
C11 0.8383 (4) 0.0601 (7) 0.4539 (4) 0.1291 (15)
H11A 0.7953 0.0577 0.4911 0.194*
H11B 0.9088 0.0860 0.4954 0.194*
H11C 0.8379 −0.0360 0.4259 0.194*
C12 0.5293 (2) 0.5115 (4) 0.3007 (2) 0.0483 (8)
C13 0.5958 (3) 0.5994 (4) 0.3752 (3) 0.0632 (10)
H13 0.6339 0.5586 0.4358 0.076*
C14 0.6045 (3) 0.7501 (4) 0.3579 (3) 0.0729 (11)
H14 0.6477 0.8101 0.4081 0.087*
C15 0.5513 (3) 0.8117 (4) 0.2692 (3) 0.0785 (12)
H15 0.5590 0.9121 0.2586 0.094*
C16 0.4866 (3) 0.7244 (4) 0.1964 (3) 0.0732 (11)
H16 0.4497 0.7662 0.1359 0.088*
C17 0.4749 (3) 0.5758 (4) 0.2106 (2) 0.0590 (9)
H17 0.4305 0.5179 0.1598 0.071*
H1A 0.420 (3) 0.018 (4) 0.027 (3) 0.070 (10)*
N1 0.4323 (2) 0.0844 (3) 0.07953 (19) 0.0533 (7)
N2 0.55515 (19) 0.2347 (3) 0.19371 (18) 0.0505 (7)
N3 0.5151 (2) 0.3599 (3) 0.31555 (17) 0.0561 (8)
N4 0.3169 (2) 0.2189 (4) 0.2482 (2) 0.0805 (10)
O1 0.2790 (2) 0.0204 (3) 0.08886 (18) 0.0761 (8)
O2 0.59235 (19) 0.1200 (3) 0.07421 (17) 0.0757 (8)
O3 0.7038 (2) 0.1625 (4) 0.3210 (2) 0.1100 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.067 (2) 0.046 (2) 0.0511 (18) −0.0031 (17) 0.0282 (17) −0.0018 (16)
C2 0.061 (2) 0.0484 (19) 0.0545 (18) −0.0016 (16) 0.0342 (16) −0.0008 (15)
C3 0.078 (3) 0.119 (4) 0.127 (4) 0.010 (3) 0.060 (3) −0.012 (3)
C4 0.135 (4) 0.098 (4) 0.098 (3) 0.014 (3) 0.085 (3) 0.013 (3)
C5 0.143 (4) 0.081 (3) 0.076 (3) 0.009 (3) 0.070 (3) 0.016 (2)
C6 0.152 (4) 0.084 (3) 0.053 (2) −0.028 (3) 0.052 (3) −0.007 (2)
C7 0.067 (2) 0.0424 (18) 0.0439 (16) 0.0054 (16) 0.0318 (16) 0.0012 (14)
C8 0.069 (2) 0.052 (2) 0.0523 (18) 0.0014 (17) 0.0350 (17) −0.0020 (17)
C9 0.063 (2) 0.070 (3) 0.057 (2) 0.0059 (19) 0.0268 (17) 0.0037 (19)
C10 0.106 (3) 0.161 (4) 0.096 (3) 0.004 (3) 0.013 (2) 0.026 (3)
C11 0.106 (3) 0.161 (4) 0.096 (3) 0.004 (3) 0.013 (2) 0.026 (3)
C12 0.0493 (18) 0.051 (2) 0.0492 (18) 0.0033 (15) 0.0242 (15) −0.0057 (16)
C13 0.066 (2) 0.066 (3) 0.060 (2) −0.0027 (19) 0.0265 (18) −0.0080 (19)
C14 0.076 (3) 0.060 (3) 0.089 (3) −0.014 (2) 0.039 (2) −0.024 (2)
C15 0.094 (3) 0.048 (2) 0.105 (3) −0.002 (2) 0.051 (3) 0.001 (2)
C16 0.085 (3) 0.058 (3) 0.076 (3) 0.009 (2) 0.031 (2) 0.008 (2)
C17 0.062 (2) 0.054 (2) 0.061 (2) 0.0036 (17) 0.0227 (18) −0.0037 (18)
N1 0.0655 (19) 0.0505 (17) 0.0509 (16) −0.0029 (14) 0.0304 (14) −0.0101 (14)
N2 0.0560 (17) 0.0541 (17) 0.0502 (15) −0.0006 (13) 0.0303 (13) −0.0030 (13)
N3 0.082 (2) 0.0504 (18) 0.0420 (14) −0.0028 (14) 0.0310 (14) −0.0031 (13)
N4 0.075 (2) 0.114 (3) 0.070 (2) −0.0053 (19) 0.0478 (18) −0.0150 (19)
O1 0.0730 (17) 0.0815 (19) 0.0795 (17) −0.0219 (15) 0.0360 (14) −0.0220 (15)
O2 0.0804 (18) 0.088 (2) 0.0769 (17) −0.0075 (14) 0.0507 (15) −0.0232 (14)
O3 0.073 (2) 0.168 (3) 0.0755 (19) 0.009 (2) 0.0146 (16) 0.035 (2)

Geometric parameters (Å, º)

C1—O1 1.221 (4) C9—O3 1.424 (4)
C1—N1 1.389 (4) C9—N2 1.448 (4)
C1—C2 1.454 (4) C9—H9A 0.9700
C2—C7 1.347 (4) C9—H9B 0.9700
C2—N4 1.382 (4) C10—O3 1.235 (5)
C3—N4 1.442 (5) C10—C11 1.470 (7)
C3—H3A 0.9600 C10—H10A 0.9700
C3—H3B 0.9600 C10—H10B 0.9700
C3—H3C 0.9600 C11—H11A 0.9600
C4—N4 1.412 (5) C11—H11B 0.9600
C4—C5 1.491 (6) C11—H11C 0.9600
C4—H4A 0.9700 C12—C13 1.386 (4)
C4—H4B 0.9700 C12—C17 1.392 (4)
C5—C6 1.488 (6) C12—N3 1.407 (4)
C5—H5A 0.9700 C13—C14 1.393 (5)
C5—H5B 0.9700 C13—H13 0.9300
C6—N3 1.456 (4) C14—C15 1.362 (5)
C6—H6A 0.9700 C14—H14 0.9300
C6—H6B 0.9700 C15—C16 1.360 (5)
C7—N3 1.403 (4) C15—H15 0.9300
C7—N2 1.424 (4) C16—C17 1.372 (5)
C8—O2 1.235 (4) C16—H16 0.9300
C8—N1 1.366 (4) C17—H17 0.9300
C8—N2 1.373 (4) N1—H1A 0.95 (4)
O1—C1—N1 119.3 (3) O3—C10—H10A 107.7
O1—C1—C2 125.4 (3) C11—C10—H10A 107.7
N1—C1—C2 115.3 (3) O3—C10—H10B 107.7
C7—C2—N4 121.0 (3) C11—C10—H10B 107.7
C7—C2—C1 118.9 (3) H10A—C10—H10B 107.1
N4—C2—C1 120.1 (3) C10—C11—H11A 109.5
N4—C3—H3A 109.5 C10—C11—H11B 109.5
N4—C3—H3B 109.5 H11A—C11—H11B 109.5
H3A—C3—H3B 109.5 C10—C11—H11C 109.5
N4—C3—H3C 109.5 H11A—C11—H11C 109.5
H3A—C3—H3C 109.5 H11B—C11—H11C 109.5
H3B—C3—H3C 109.5 C13—C12—C17 119.0 (3)
N4—C4—C5 115.5 (3) C13—C12—N3 121.0 (3)
N4—C4—H4A 108.4 C17—C12—N3 120.0 (3)
C5—C4—H4A 108.4 C12—C13—C14 118.9 (3)
N4—C4—H4B 108.4 C12—C13—H13 120.6
C5—C4—H4B 108.4 C14—C13—H13 120.6
H4A—C4—H4B 107.5 C15—C14—C13 121.6 (4)
C6—C5—C4 115.1 (4) C15—C14—H14 119.2
C6—C5—H5A 108.5 C13—C14—H14 119.2
C4—C5—H5A 108.5 C16—C15—C14 119.1 (4)
C6—C5—H5B 108.5 C16—C15—H15 120.4
C4—C5—H5B 108.5 C14—C15—H15 120.4
H5A—C5—H5B 107.5 C15—C16—C17 121.2 (4)
N3—C6—C5 114.0 (3) C15—C16—H16 119.4
N3—C6—H6A 108.8 C17—C16—H16 119.4
C5—C6—H6A 108.8 C16—C17—C12 120.2 (3)
N3—C6—H6B 108.8 C16—C17—H17 119.9
C5—C6—H6B 108.8 C12—C17—H17 119.9
H6A—C6—H6B 107.7 C8—N1—C1 126.6 (3)
C2—C7—N3 123.2 (3) C8—N1—H1A 113 (2)
C2—C7—N2 121.8 (3) C1—N1—H1A 119 (2)
N3—C7—N2 115.0 (3) C8—N2—C7 120.9 (3)
O2—C8—N1 121.3 (3) C8—N2—C9 117.1 (3)
O2—C8—N2 122.8 (3) C7—N2—C9 120.2 (3)
N1—C8—N2 115.9 (3) C7—N3—C12 120.0 (2)
O3—C9—N2 105.8 (3) C7—N3—C6 119.6 (3)
O3—C9—H9A 110.6 C12—N3—C6 120.0 (3)
N2—C9—H9A 110.6 C2—N4—C4 122.3 (3)
O3—C9—H9B 110.6 C2—N4—C3 120.2 (3)
N2—C9—H9B 110.6 C4—N4—C3 117.1 (3)
H9A—C9—H9B 108.7 C10—O3—C9 117.7 (4)
O3—C10—C11 118.3 (5)
O1—C1—C2—C7 176.9 (3) N1—C8—N2—C9 165.3 (3)
N1—C1—C2—C7 −5.3 (4) C2—C7—N2—C8 3.3 (5)
O1—C1—C2—N4 −2.4 (5) N3—C7—N2—C8 −177.8 (3)
N1—C1—C2—N4 175.4 (3) C2—C7—N2—C9 −161.2 (3)
N4—C4—C5—C6 63.4 (5) N3—C7—N2—C9 17.8 (4)
C4—C5—C6—N3 −56.3 (5) O3—C9—N2—C8 −93.3 (3)
N4—C2—C7—N3 −0.1 (5) O3—C9—N2—C7 71.8 (4)
C1—C2—C7—N3 −179.5 (3) C2—C7—N3—C12 −112.7 (4)
N4—C2—C7—N2 178.7 (3) N2—C7—N3—C12 68.4 (4)
C1—C2—C7—N2 −0.6 (5) C2—C7—N3—C6 60.4 (5)
C17—C12—C13—C14 1.1 (5) N2—C7—N3—C6 −118.5 (4)
N3—C12—C13—C14 −177.8 (3) C13—C12—N3—C7 −156.5 (3)
C12—C13—C14—C15 −1.5 (5) C17—C12—N3—C7 24.5 (4)
C13—C14—C15—C16 1.2 (6) C13—C12—N3—C6 30.4 (5)
C14—C15—C16—C17 −0.5 (6) C17—C12—N3—C6 −148.6 (4)
C15—C16—C17—C12 0.2 (5) C5—C6—N3—C7 −23.0 (6)
C13—C12—C17—C16 −0.5 (5) C5—C6—N3—C12 150.2 (4)
N3—C12—C17—C16 178.4 (3) C7—C2—N4—C4 −55.7 (5)
O2—C8—N1—C1 173.7 (3) C1—C2—N4—C4 123.6 (4)
N2—C8—N1—C1 −7.3 (5) C7—C2—N4—C3 132.0 (4)
O1—C1—N1—C8 −172.3 (3) C1—C2—N4—C3 −48.7 (5)
C2—C1—N1—C8 9.8 (5) C5—C4—N4—C2 13.9 (6)
O2—C8—N2—C7 179.3 (3) C5—C4—N4—C3 −173.6 (4)
N1—C8—N2—C7 0.4 (4) C11—C10—O3—C9 −179.7 (5)
O2—C8—N2—C9 −15.7 (5) N2—C9—O3—C10 −179.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.95 (4) 1.91 (4) 2.862 (4) 175 (3)
C13—H13···O1ii 0.93 2.49 3.397 (5) 164

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2397).

References

  1. Chen, S., Bartkovitz, D., Cai, J., Chen, Y., Chen, Z., Chu, X., Le, K., Le, N., Luk, K., Mischke, S., Naderi-Oboodi, G., Boylan, J., Nevins, T., Qing, W., Chen, Y. & Wovkulich, P. M. (2012). Bioorg. Med. Chem. Lett. 22, 1247–1250. [DOI] [PubMed]
  2. Ferreira, M. D. R. R., Cecere, G., Pace, P. & Summa, V. (2009). Tetrahedron Lett. 50, 148–151.
  3. Gracias, V., Ji, Z., Akritopoulou-Zanze, I., Abad-Zapatero, C., Huth, J. R., Song, D., Hajduk, P. J., Johnson, E. F., Glaser, K. B., Marcotte, P. A., Pease, L., Soni, N. B., Stewart, K. D., Davidsen, S. K., Michaelides, M. R. & Djuric, S. W. (2008). Bioorg. Med. Chem. Lett. 18, 2691–2695. [DOI] [PubMed]
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Insuasty, B., Orozco, F., Quiroga, J., Abonia, R., Nogueras, M. & Cobo, J. (2008). Eur. J. Med. Chem. 43, 1955–1962. [DOI] [PubMed]
  6. Li, G., Wang, X., Tian, C., Zhang, T., Zhang, Z. & Liu, J. (2012). Tetrahedron Lett. Submitted.
  7. Rigaku (2000). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku/MSC (2000). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, X., Lou, Q., Guo, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252–3258. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014985/kp2397sup1.cif

e-68-o1396-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014985/kp2397Isup2.hkl

e-68-o1396-Isup2.hkl (192.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014985/kp2397Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812014985/kp2397Isup4.cdx

Supplementary material file. DOI: 10.1107/S1600536812014985/kp2397Isup5.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES