Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1405. doi: 10.1107/S1600536812015796

5-Bromo-N-(3,4-dimeth­oxy­benz­yl)pyridin-2-amine

Jie Li a, Lin-Yan Lu a, Wang-Xing Shen a, Jian-You Shi b,*
PMCID: PMC3344531  PMID: 22590293

Abstract

The title compound, C14H15BrN2O2, an inter­mediate in drug discovery, was synthesized by the reaction of 5-bromo­pyridin-2-amine and 3,4-dimeth­oxy­benzaldehyde. In the crystal, molecules are linked via pairs ofN—H⋯N hydrogen bonds, leading to the formation of inversion dimers. A short contact occurs between the aryl H atom (ortho position from N) and the centroid of the benzene ring.

Related literature  

For the anti-tumor activity of related compounds, see: Kovala-Demertzi et al. (2007). For the anti-ulcer activity of related compounds, see: Cho et al. (2001). For the anti-viral activity of related compounds, see: Mavel et al. (2002). For the anti-microbial activity of related compounds, see: Yeong et al. (2004).graphic file with name e-68-o1405-scheme1.jpg

Experimental  

Crystal data  

  • C14H15BrN2O2

  • M r = 323.18

  • Monoclinic, Inline graphic

  • a = 6.3202 (2) Å

  • b = 13.7940 (4) Å

  • c = 15.8582 (6) Å

  • β = 100.961 (4)°

  • V = 1357.31 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 130 K

  • 0.42 × 0.30 × 0.15 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.509, T max = 1.000

  • 8188 measured reflections

  • 2384 independent reflections

  • 2055 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.060

  • S = 1.03

  • 2384 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015796/rk2346sup1.cif

e-68-o1405-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015796/rk2346Isup2.hkl

e-68-o1405-Isup2.hkl (117.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015796/rk2346Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 2.31 3.090 (3) 149
C2—H2ACgi 0.95 2.50 3.397 (3) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

The pyridine skeleton is a great importance to chemistry as well as biology which are well known for their versatile pharmacological activities such as anti-tumor (Kovala-Demertzi et al., 2007), anti-ulcer (Cho et al., 2001), anti-viral (Mavel et al., 2002) and antimicrobial (Yeong et al., 2004). The title compound is one of these compounds. The crystal packing is stabilized by a pair of strong intermolecular N2–H2···N1i classical hydrogen bonds conecting two moleculars to form a centrosymmtric dimer. The H2A atom from pyridine moiety has short contact (2.50Å) with Cgi of phenyl ring (C7-C12). Symmetry code: (i) 1-x, 2-y, -z.

Experimental

A methanol solution of 5-bromopyridin-2-amine (1.73 g, 0.01 mol), 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mol) with sodium cyanoborohydride (0.69 g, 0.011 mol) was heated to reflux for 3 h. The mixture was poured into cold water and then filtered to get this compound. Single crystals were obtained from the powder in ethanol after 5 days.

Refinement

H atoms were positioned geometrically (C–H = 0.95-0.99Å and N–H = 0.88Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C14H15BrN2O2 F(000) = 656
Mr = 323.18 Dx = 1.582 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybc Cell parameters from 3191 reflections
a = 6.3202 (2) Å θ = 3.0–29.3°
b = 13.7940 (4) Å µ = 3.03 mm1
c = 15.8582 (6) Å T = 130 K
β = 100.961 (4)° Block, colourless
V = 1357.31 (8) Å3 0.42 × 0.30 × 0.15 mm
Z = 4

Data collection

Agilent Xcalibur Eos diffractometer 2384 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2055 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 16.0874 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω–scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −15→16
Tmin = 0.509, Tmax = 1.000 l = −18→15
8188 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0214P)2 + 1.0069P] where P = (Fo2 + 2Fc2)/3
2384 reflections (Δ/σ)max = 0.001
174 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Experimental. Absorption correction: CrysAlis Pro (Agilent Technologies, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.29705 (4) 0.620125 (18) 0.137802 (17) 0.02180 (10)
O1 0.8391 (3) 1.38453 (12) 0.14221 (11) 0.0181 (4)
O2 1.1319 (3) 1.40582 (12) 0.05188 (11) 0.0185 (4)
N1 0.4443 (3) 0.89466 (14) 0.06525 (13) 0.0164 (5)
N2 0.7225 (3) 1.00200 (15) 0.10747 (13) 0.0178 (5)
H2 0.6482 1.0443 0.0722 0.021*
C1 0.4393 (4) 0.74052 (17) 0.13319 (15) 0.0148 (5)
C2 0.3514 (4) 0.80926 (17) 0.07365 (16) 0.0165 (5)
H2A 0.2181 0.7951 0.0368 0.020*
C3 0.6333 (4) 0.91502 (18) 0.11831 (15) 0.0147 (5)
C4 0.7300 (4) 0.84807 (18) 0.18126 (16) 0.0177 (5)
H4 0.8617 0.8637 0.2186 0.021*
C5 0.6323 (4) 0.76009 (18) 0.18814 (16) 0.0182 (6)
H5 0.6958 0.7138 0.2297 0.022*
C6 0.9380 (4) 1.02800 (18) 0.15245 (16) 0.0176 (6)
H6A 1.0436 0.9803 0.1387 0.021*
H6B 0.9432 1.0263 0.2152 0.021*
C7 0.9971 (4) 1.12777 (17) 0.12650 (15) 0.0154 (5)
C8 0.8867 (4) 1.20894 (18) 0.14866 (15) 0.0153 (5)
H8 0.7767 1.2007 0.1814 0.018*
C9 0.9355 (4) 1.30058 (17) 0.12366 (15) 0.0144 (5)
C10 1.0981 (4) 1.31318 (18) 0.07442 (15) 0.0148 (5)
C11 1.2084 (4) 1.23269 (18) 0.05377 (16) 0.0175 (6)
H11 1.3198 1.2404 0.0217 0.021*
C12 1.1576 (4) 1.14027 (18) 0.07967 (16) 0.0175 (6)
H12 1.2342 1.0856 0.0649 0.021*
C13 0.6735 (4) 1.37654 (19) 0.19176 (17) 0.0209 (6)
H13A 0.5605 1.3329 0.1627 0.031*
H13B 0.6116 1.4407 0.1979 0.031*
H13C 0.7347 1.3506 0.2487 0.031*
C14 1.2631 (4) 1.41893 (19) −0.01160 (17) 0.0214 (6)
H14A 1.2102 1.3772 −0.0611 0.032*
H14B 1.4126 1.4018 0.0130 0.032*
H14C 1.2564 1.4868 −0.0301 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02543 (15) 0.01635 (15) 0.02437 (16) −0.00657 (11) 0.00660 (11) 0.00055 (11)
O1 0.0203 (9) 0.0166 (9) 0.0204 (10) 0.0020 (7) 0.0109 (8) 0.0025 (8)
O2 0.0218 (9) 0.0140 (9) 0.0227 (10) −0.0044 (7) 0.0116 (8) −0.0004 (7)
N1 0.0156 (10) 0.0169 (11) 0.0153 (11) −0.0021 (9) −0.0002 (9) 0.0000 (9)
N2 0.0173 (10) 0.0137 (11) 0.0193 (12) −0.0020 (9) −0.0044 (9) 0.0042 (9)
C1 0.0196 (12) 0.0115 (13) 0.0146 (13) −0.0018 (10) 0.0067 (11) −0.0018 (10)
C2 0.0154 (12) 0.0180 (13) 0.0155 (14) −0.0032 (10) 0.0017 (11) −0.0036 (11)
C3 0.0146 (12) 0.0162 (13) 0.0131 (13) −0.0010 (10) 0.0024 (10) −0.0010 (10)
C4 0.0163 (12) 0.0185 (13) 0.0161 (14) −0.0007 (10) −0.0021 (11) 0.0030 (11)
C5 0.0194 (13) 0.0185 (14) 0.0167 (14) 0.0007 (11) 0.0037 (11) 0.0045 (11)
C6 0.0136 (12) 0.0178 (14) 0.0194 (14) −0.0014 (10) −0.0014 (11) 0.0006 (11)
C7 0.0145 (12) 0.0159 (13) 0.0135 (13) −0.0030 (10) −0.0034 (10) −0.0010 (10)
C8 0.0136 (12) 0.0197 (14) 0.0124 (13) −0.0030 (10) 0.0019 (10) 0.0018 (10)
C9 0.0121 (12) 0.0176 (13) 0.0129 (13) 0.0002 (10) 0.0008 (10) −0.0018 (11)
C10 0.0138 (12) 0.0168 (13) 0.0129 (13) −0.0033 (10) 0.0000 (10) −0.0018 (10)
C11 0.0145 (12) 0.0213 (14) 0.0180 (14) −0.0034 (11) 0.0061 (11) −0.0018 (11)
C12 0.0157 (12) 0.0150 (14) 0.0212 (14) 0.0003 (10) 0.0018 (11) −0.0039 (11)
C13 0.0179 (12) 0.0259 (15) 0.0206 (14) 0.0019 (11) 0.0076 (11) −0.0013 (12)
C14 0.0215 (13) 0.0210 (14) 0.0236 (15) −0.0048 (11) 0.0095 (12) 0.0014 (12)

Geometric parameters (Å, º)

Br1—C1 1.897 (2) C6—H6B 0.9900
O1—C9 1.366 (3) C6—C7 1.504 (3)
O1—C13 1.427 (3) C7—C8 1.399 (3)
O2—C10 1.355 (3) C7—C12 1.377 (3)
O2—C14 1.432 (3) C8—H8 0.9500
N1—C2 1.334 (3) C8—C9 1.377 (3)
N1—C3 1.353 (3) C9—C10 1.414 (3)
N2—H2 0.8800 C10—C11 1.383 (3)
N2—C3 1.350 (3) C11—H11 0.9500
N2—C6 1.457 (3) C11—C12 1.395 (3)
C1—C2 1.378 (3) C12—H12 0.9500
C1—C5 1.384 (3) C13—H13A 0.9800
C2—H2A 0.9500 C13—H13B 0.9800
C3—C4 1.411 (3) C13—H13C 0.9800
C4—H4 0.9500 C14—H14A 0.9800
C4—C5 1.375 (3) C14—H14B 0.9800
C5—H5 0.9500 C14—H14C 0.9800
C6—H6A 0.9900
C9—O1—C13 117.18 (18) C12—C7—C8 119.3 (2)
C10—O2—C14 116.51 (18) C7—C8—H8 119.6
C2—N1—C3 118.3 (2) C9—C8—C7 120.8 (2)
C3—N2—H2 119.0 C9—C8—H8 119.6
C3—N2—C6 122.0 (2) O1—C9—C8 125.6 (2)
C6—N2—H2 119.0 O1—C9—C10 114.5 (2)
C2—C1—Br1 119.77 (18) C8—C9—C10 119.8 (2)
C2—C1—C5 119.3 (2) O2—C10—C9 115.4 (2)
C5—C1—Br1 120.93 (18) O2—C10—C11 125.6 (2)
N1—C2—C1 123.2 (2) C11—C10—C9 118.9 (2)
N1—C2—H2A 118.4 C10—C11—H11 119.7
C1—C2—H2A 118.4 C10—C11—C12 120.6 (2)
N1—C3—C4 121.1 (2) C12—C11—H11 119.7
N2—C3—N1 116.5 (2) C7—C12—C11 120.5 (2)
N2—C3—C4 122.4 (2) C7—C12—H12 119.8
C3—C4—H4 120.2 C11—C12—H12 119.8
C5—C4—C3 119.5 (2) O1—C13—H13A 109.5
C5—C4—H4 120.2 O1—C13—H13B 109.5
C1—C5—H5 120.7 O1—C13—H13C 109.5
C4—C5—C1 118.5 (2) H13A—C13—H13B 109.5
C4—C5—H5 120.7 H13A—C13—H13C 109.5
N2—C6—H6A 109.6 H13B—C13—H13C 109.5
N2—C6—H6B 109.6 O2—C14—H14A 109.5
N2—C6—C7 110.42 (19) O2—C14—H14B 109.5
H6A—C6—H6B 108.1 O2—C14—H14C 109.5
C7—C6—H6A 109.6 H14A—C14—H14B 109.5
C7—C6—H6B 109.6 H14A—C14—H14C 109.5
C8—C7—C6 120.1 (2) H14B—C14—H14C 109.5
C12—C7—C6 120.6 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
N2—H2···N1i 0.88 2.31 3.090 (3) 149
C2—H2A···Cgi 0.95 2.50 3.397 (3) 158

Symmetry code: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2346).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Cho, S. Y., Kang, S. K., Kim, S. S., Cheon, H. G., Choi, J. K. & Yun, E. K. (2001). Bull. Korean Chem. Soc. 22, 1217–1223.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Kovala-Demertzi, D., Boccarelli, A. M. A., Demertzis, M. A. & Coluccia, M. (2007). Chemotherapy, 53, 148–152. [DOI] [PubMed]
  5. Mavel, S., Renou, J., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941–946. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yeong, W. J., Weon, B. I., Jae, K. R., Shim, M. J., Won, B. K. & Eung, C. C. (2004). Bioorg. Med. Chem. 12, 5909–5915.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015796/rk2346sup1.cif

e-68-o1405-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015796/rk2346Isup2.hkl

e-68-o1405-Isup2.hkl (117.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015796/rk2346Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES