Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1406. doi: 10.1107/S1600536812015243

2-Amino-3-[(E)-(2-hy­droxy-3-methyl­benzyl­idene)amino]­but-2-ene­dinitrile

Elham S Aazam a,*, Orhan Büyükgüngör b
PMCID: PMC3344532  PMID: 22590294

Abstract

The title compound, C12H10N4O, is a Schiff base obtained from the condensation of diamino­maleonitrile and 2-hy­droxy-3-methyl­benzaldehyde. The mol­ecule is roughly planar, with an r.m.s. deviation of 0.0354 Å, and adopts the phenol–imine tautomeric form. An intra­molecular O—H⋯N hydrogen bond involving the O—H group and the azomethine N atom generates an S(6) ring. In the crystal, there are two N—H⋯N hydrogen bonds.

Related literature  

For the biological properties of Schiff bases see: Da Silva et al. (2011) and for their use in coordination chemistry, see: Aazam et al. (2011); Kargar et al. (2009); Yeap et al. (2009). For graph-set notation, see: Bernstein et al., (1995). For related structures, see: Aazam & Büyükgüngör (2010); Hökelek et al. (2000); Odabaşoğlu et al. (2005); Rivera et al. (2006). graphic file with name e-68-o1406-scheme1.jpg

Experimental  

Crystal data  

  • C12H10N4O

  • M r = 226.24

  • Monoclinic, Inline graphic

  • a = 6.9041 (6) Å

  • b = 11.8791 (7) Å

  • c = 14.0282 (11) Å

  • β = 101.600 (7)°

  • V = 1127.02 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.76 × 0.48 × 0.03 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.949, T max = 0.996

  • 16504 measured reflections

  • 2336 independent reflections

  • 1700 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.132

  • S = 1.14

  • 2336 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015243/go2051sup1.cif

e-68-o1406-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015243/go2051Isup2.hkl

e-68-o1406-Isup2.hkl (112.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015243/go2051Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (3) 1.83 (3) 2.643 (2) 153 (3)
N2—H2A⋯N4i 0.89 (3) 2.40 (3) 3.156 (3) 142 (2)
N2—H2B⋯N3ii 0.88 (3) 2.26 (3) 3.098 (3) 159 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F. 279 of University Research Fund) and King Abdulaziz University and the Deanship of Scientific Research for financial support (grant No. 17–013/430).

supplementary crystallographic information

Comment

Tetrameric HCN (diaminomaleonitrile, DAMN) is one of the most versatile reagents in organic chemistry. It has been used as a precursor for producing nucleotides and for synthesizing a wide variety of heterocyclic compounds. These compounds are important as synthetic intermediates and they are also used in pharmacology (Da Silva et al., 2011; Rivera et al., 2006).

Schiff bases derived from DAMN have also been used as versatile ligands in coordination chemistry (Aazam et al., 2011; Kargar et al., 2009; Yeap et al., 2009). There are two types of intra-molecular hydrogen bonds in Schiff bases, which may be stabilized either in keto-amine (N—H···O hydrogen bond) (Hökelek et al., 2000) or phenol-imine (N···H—O hydrogen bond) tautomeric forms (Odabaşoǧlu et al., 2005; Aazam & Büyükgüngör, 2010). The present X-ray investigation shows that the title compound is a Schiff base and exists in the phenol-imine form in the solid-state.

The molecular structure of the title compound is shown in Figure 1. An intramolecular O1—H1···N1 hydrogen bond, a characteristic hydrogen bond for Schiff bases, leads to the formation of a S(6) six-membered ring (Figure 1) (Bernstein et al., 1995).

The N2—H2A···N4i (i; -x, y - 1/2, -z + 1/2) and N2—H2B···N3ii (ii; x, -y + 3/2, z - 1/2) hydrogen bonds generate a C(5) zigzag chain running parallel to the b axis and a C(6) chain running parallel to the c axis, respectively, (Figure 2–3). The intersection of the C(5) and C(6) chains produce alternating R44(18) and R44(22) ring motives, (Figure 4), (Bernstein et al., 1995) which link the molecules into corrugated sheets which lie in the b,c plane. Details of the hydrogen bonds are given in Table 1.

Refinement

The H atoms bonded to oxygen and nitrogen atoms were located in Fourier map and refined isotropically. Other hydrogen atoms were positioned geometrically and treated using a riding model, fixing bond lengths at 0.93 and 0.96 Å for CH (aromatic) and CH3, respectively. The displacement parameters of the H atoms were constrained with Uiso(H) = 1.2Ueq (aromatic and methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and atomic numbering.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing the formation of C(5) chains parallel to the b axis (i; -x, y - 1/2, -z + 1/2). Hydrogen bonds are indicated by dashed lines.

Fig. 3.

Fig. 3.

Part of the crystal structure of the title compound, showing the formation of C(6) chains parallel to the c axis (i; x, -y + 3/2, z - 1/2). Hydrogen bonds are indicated by dashed lines.

Fig. 4.

Fig. 4.

Part of the crystal structure of the title compound, showing the formation of R44(18) and R44(22) rings. Hydrogen bonds are indicated by dashed lines. (Symmetry codes as in Table 1)

Crystal data

C12H10N4O F(000) = 472
Mr = 226.24 Dx = 1.333 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 16504 reflections
a = 6.9041 (6) Å θ = 2.3–28.0°
b = 11.8791 (7) Å µ = 0.09 mm1
c = 14.0282 (11) Å T = 296 K
β = 101.600 (7)° Plate, brown
V = 1127.02 (15) Å3 0.76 × 0.48 × 0.03 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 2336 independent reflections
Radiation source: fine-focus sealed tube 1700 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
rotation method scans θmax = 26.5°, θmin = 2.3°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −8→8
Tmin = 0.949, Tmax = 0.996 k = −14→14
16504 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0085P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
2336 reflections Δρmax = 0.15 e Å3
168 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.008 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2927 (3) 0.39788 (16) 0.57527 (14) 0.0412 (5)
C2 0.2741 (3) 0.30861 (18) 0.50843 (15) 0.0451 (5)
C3 0.2980 (3) 0.19643 (18) 0.53978 (17) 0.0507 (5)
C4 0.3421 (3) 0.1774 (2) 0.63866 (19) 0.0579 (6)
H4 0.3581 0.1036 0.6609 0.069*
C5 0.3637 (3) 0.2639 (2) 0.70634 (17) 0.0597 (6)
H5 0.3951 0.2480 0.7726 0.072*
C6 0.3382 (3) 0.3731 (2) 0.67447 (16) 0.0518 (5)
H6 0.3514 0.4313 0.7196 0.062*
C7 0.2734 (4) 0.1024 (2) 0.4671 (2) 0.0730 (7)
H7A 0.3735 0.1081 0.4287 0.088*
H7B 0.1452 0.1073 0.4254 0.088*
H7C 0.2860 0.0315 0.5006 0.088*
C8 0.2653 (3) 0.51404 (16) 0.54458 (14) 0.0426 (5)
H8 0.2785 0.5698 0.5920 0.051*
C9 0.2013 (3) 0.65633 (15) 0.42752 (14) 0.0393 (5)
C10 0.1644 (3) 0.68409 (16) 0.33180 (14) 0.0405 (5)
C11 0.2178 (3) 0.74210 (17) 0.50067 (15) 0.0461 (5)
C12 0.1464 (3) 0.80158 (18) 0.30383 (15) 0.0482 (5)
N1 0.2236 (2) 0.54359 (13) 0.45456 (11) 0.0405 (4)
N2 0.1385 (3) 0.61018 (17) 0.25795 (15) 0.0563 (5)
H2A 0.112 (4) 0.538 (3) 0.2695 (19) 0.077 (8)*
H2B 0.130 (4) 0.637 (2) 0.199 (2) 0.076 (8)*
N3 0.2305 (3) 0.80465 (17) 0.56309 (15) 0.0664 (6)
N4 0.1280 (3) 0.89245 (17) 0.27921 (17) 0.0709 (6)
O1 0.2304 (3) 0.32719 (15) 0.41171 (12) 0.0668 (5)
H1 0.217 (4) 0.400 (3) 0.405 (2) 0.081 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0386 (10) 0.0447 (11) 0.0419 (11) 0.0035 (8) 0.0116 (8) 0.0071 (9)
C2 0.0471 (11) 0.0469 (12) 0.0413 (12) 0.0045 (9) 0.0090 (9) 0.0061 (9)
C3 0.0485 (12) 0.0429 (12) 0.0594 (14) 0.0028 (9) 0.0076 (10) 0.0095 (10)
C4 0.0520 (13) 0.0504 (13) 0.0705 (17) 0.0023 (10) 0.0108 (11) 0.0236 (12)
C5 0.0649 (14) 0.0679 (16) 0.0466 (13) 0.0040 (11) 0.0120 (11) 0.0215 (12)
C6 0.0563 (13) 0.0597 (14) 0.0417 (12) 0.0015 (10) 0.0149 (10) 0.0064 (10)
C7 0.0825 (17) 0.0444 (13) 0.0863 (19) 0.0090 (12) 0.0027 (14) −0.0023 (13)
C8 0.0473 (11) 0.0408 (11) 0.0415 (12) 0.0017 (8) 0.0135 (8) 0.0006 (9)
C9 0.0416 (10) 0.0355 (10) 0.0421 (11) −0.0004 (8) 0.0113 (8) 0.0004 (8)
C10 0.0430 (10) 0.0345 (10) 0.0436 (12) −0.0030 (8) 0.0077 (8) 0.0026 (8)
C11 0.0566 (13) 0.0382 (11) 0.0446 (12) 0.0035 (9) 0.0127 (10) 0.0029 (10)
C12 0.0548 (12) 0.0404 (12) 0.0482 (12) −0.0029 (9) 0.0072 (9) 0.0055 (10)
N1 0.0450 (9) 0.0367 (8) 0.0411 (10) 0.0015 (7) 0.0114 (7) 0.0039 (7)
N2 0.0836 (14) 0.0420 (11) 0.0416 (11) −0.0110 (10) 0.0084 (9) 0.0022 (9)
N3 0.0917 (15) 0.0538 (12) 0.0540 (12) 0.0047 (10) 0.0151 (11) −0.0096 (10)
N4 0.0901 (15) 0.0433 (11) 0.0779 (15) 0.0048 (10) 0.0134 (12) 0.0155 (10)
O1 0.1120 (14) 0.0444 (9) 0.0415 (10) 0.0164 (9) 0.0098 (9) 0.0023 (7)

Geometric parameters (Å, º)

C1—C6 1.395 (3) C7—H7C 0.9600
C1—C2 1.404 (3) C8—N1 1.286 (2)
C1—C8 1.447 (3) C8—H8 0.9300
C2—O1 1.348 (3) C9—C10 1.356 (3)
C2—C3 1.403 (3) C9—N1 1.392 (2)
C3—C4 1.378 (3) C9—C11 1.434 (3)
C3—C7 1.499 (3) C10—N2 1.342 (3)
C4—C5 1.386 (4) C10—C12 1.448 (3)
C4—H4 0.9300 C11—N3 1.138 (3)
C5—C6 1.372 (3) C12—N4 1.133 (3)
C5—H5 0.9300 N2—H2A 0.89 (3)
C6—H6 0.9300 N2—H2B 0.88 (3)
C7—H7A 0.9600 O1—H1 0.88 (3)
C7—H7B 0.9600
C6—C1—C2 118.59 (18) H7A—C7—H7B 109.5
C6—C1—C8 119.22 (19) C3—C7—H7C 109.5
C2—C1—C8 122.19 (18) H7A—C7—H7C 109.5
O1—C2—C3 117.37 (19) H7B—C7—H7C 109.5
O1—C2—C1 121.37 (18) N1—C8—C1 122.86 (18)
C3—C2—C1 121.26 (19) N1—C8—H8 118.6
C4—C3—C2 117.4 (2) C1—C8—H8 118.6
C4—C3—C7 122.3 (2) C10—C9—N1 119.49 (17)
C2—C3—C7 120.3 (2) C10—C9—C11 120.52 (17)
C3—C4—C5 122.7 (2) N1—C9—C11 119.99 (17)
C3—C4—H4 118.7 N2—C10—C9 125.07 (19)
C5—C4—H4 118.7 N2—C10—C12 115.50 (19)
C6—C5—C4 119.2 (2) C9—C10—C12 119.43 (18)
C6—C5—H5 120.4 N3—C11—C9 175.5 (2)
C4—C5—H5 120.4 N4—C12—C10 177.7 (2)
C5—C6—C1 120.9 (2) C8—N1—C9 121.38 (16)
C5—C6—H6 119.6 C10—N2—H2A 118.9 (17)
C1—C6—H6 119.6 C10—N2—H2B 117.7 (18)
C3—C7—H7A 109.5 H2A—N2—H2B 123 (2)
C3—C7—H7B 109.5 C2—O1—H1 105.2 (19)
C6—C1—C2—O1 179.99 (18) C2—C1—C6—C5 −0.2 (3)
C8—C1—C2—O1 0.3 (3) C8—C1—C6—C5 179.5 (2)
C6—C1—C2—C3 0.8 (3) C6—C1—C8—N1 179.86 (18)
C8—C1—C2—C3 −178.93 (19) C2—C1—C8—N1 −0.4 (3)
O1—C2—C3—C4 −179.80 (19) N1—C9—C10—N2 2.9 (3)
C1—C2—C3—C4 −0.6 (3) C11—C9—C10—N2 −177.18 (19)
O1—C2—C3—C7 −0.5 (3) N1—C9—C10—C12 −178.38 (17)
C1—C2—C3—C7 178.8 (2) C11—C9—C10—C12 1.5 (3)
C2—C3—C4—C5 −0.2 (3) C1—C8—N1—C9 −178.97 (18)
C7—C3—C4—C5 −179.5 (2) C10—C9—N1—C8 177.62 (18)
C3—C4—C5—C6 0.8 (3) C11—C9—N1—C8 −2.3 (3)
C4—C5—C6—C1 −0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.88 (3) 1.83 (3) 2.643 (2) 153 (3)
N2—H2A···N4i 0.89 (3) 2.40 (3) 3.156 (3) 142 (2)
N2—H2B···N3ii 0.88 (3) 2.26 (3) 3.098 (3) 159 (2)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2051).

References

  1. Aazam, E. S. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2587–o2588. [DOI] [PMC free article] [PubMed]
  2. Aazam, E. S., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m314–m315. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. & De Fátima, Â. (2011). J. Advert. Res. 2, 1–8.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Hökelek, T., Kiliç, Z., Isiklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.
  8. Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404. [DOI] [PMC free article] [PubMed]
  9. Odabąsogˇlu, M., Albayrak, C. & Büyükgüngör, O. (2005). Acta Cryst. E61, o425–o426. [Google Scholar]
  10. Rivera, A., Ríos-Motta, J. & León, F. (2006). Molecules, 11, 858–866. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Stoe & Cie (2001). X-RED Stoe & Cie, Darmstadt, Germany.
  13. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  14. Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015243/go2051sup1.cif

e-68-o1406-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015243/go2051Isup2.hkl

e-68-o1406-Isup2.hkl (112.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015243/go2051Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES