Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1407. doi: 10.1107/S1600536812015346

3-Ethyl-4-[(E)-(4-fluoro­benzyl­idene)amino]-1H-1,2,4-triazole-5(4H)-thione

S Jeyaseelan a, H C Devarajegowda a,*, R Sathishkumar b, Agnes Sylvia D’souza c, Alphonsus D’souza c
PMCID: PMC3344533  PMID: 22590295

Abstract

In the title compound, C11H11FN4S, the dihedral angle between the 1,2,4-triazole ring and the benzene ring is 25.04 (12)° and an intra­moleuclar C—H⋯S inter­action leads to an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R 2 2(8) loops.

Related literature  

For a related structure and background references, see: Devarajegowda et al. (2010).graphic file with name e-68-o1407-scheme1.jpg

Experimental  

Crystal data  

  • C11H11FN4S

  • M r = 250.30

  • Monoclinic, Inline graphic

  • a = 7.7967 (17) Å

  • b = 8.4205 (19) Å

  • c = 19.138 (4) Å

  • β = 99.780 (4)°

  • V = 1238.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 11403 measured reflections

  • 2182 independent reflections

  • 1586 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.115

  • S = 1.02

  • 2182 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015346/hb6709sup1.cif

e-68-o1407-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015346/hb6709Isup2.hkl

e-68-o1407-Isup2.hkl (105.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015346/hb6709Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯S1i 0.86 2.48 3.3275 (19) 168
C11—H11⋯S1 0.93 2.55 3.222 (3) 129

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection.

supplementary crystallographic information

Comment

Earlier we reported the crystal structure of 1-{1-[2,8- Bis(trifluoromethyl)-4-quinolyl]-5-methyl-1H-1,2,3-triazol- 4-yl}ethanone (Devarajegowda et al.,2010). We report here the crystal structure of the title compound (Fig. 1). The packing of the molecules in the title structure is depicted in Fig. 2. The 1,2,4 triazole ring (N3 N4 N5 C9 C10 is not coplanar with the benzene ring (C12—C17) system; the dihedral angle between the two planes being 25.04 (12)°. The crystal structure is characterized by intermolecular N4—H4···S1 and intramolecular C11—H11···S1 interactions are observed (Table 1).

Experimental

An equimolar mixture of the triazole (0.02 mol) and 4-fluorobenzaldehyde (0.02 mol) in absolute ethanol (30 ml) was refluxed with concentrated H2SO4 (0.5 ml) for 1–2 hrs. On cooling the reaction mixture, the solid product separated was crystallized from ethanol as colourless blocks. The synthesized compound was evaluated for antibacterial and antifungal activity by cup-plate diffusion method and used as the standard drugs for antibacterial and antifungal activity respectively.

Refinement

All H atoms were placed at calculated positions and refined as riding, with N—H = 0.86 Å, Csp2—H = 0.93 Å, C(methylene)—H = 0.97 and C(methyl)—H = 0.96 Å. Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Paciking of the molecules.

Crystal data

C11H11FN4S F(000) = 520
Mr = 250.30 Dx = 1.343 Mg m3
Monoclinic, P21/c Melting point: 414 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.7967 (17) Å Cell parameters from 2182 reflections
b = 8.4205 (19) Å θ = 2.2–25.0°
c = 19.138 (4) Å µ = 0.26 mm1
β = 99.780 (4)° T = 293 K
V = 1238.2 (5) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD diffractometer 2182 independent reflections
Radiation source: fine-focus sealed tube 1586 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
ω and φ scans θmax = 25.0°, θmin = 2.2°
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) h = −9→9
Tmin = 0.770, Tmax = 1.000 k = −10→10
11403 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1712P] where P = (Fo2 + 2Fc2)/3
2182 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22343 (8) 0.61721 (9) 0.07429 (3) 0.0711 (3)
F2 1.1525 (2) 1.1308 (2) 0.18960 (8) 0.0886 (5)
N3 0.2231 (2) 0.5813 (2) −0.12894 (9) 0.0579 (5)
N4 0.1651 (2) 0.5520 (2) −0.06628 (9) 0.0542 (5)
H4 0.0729 0.4974 −0.0641 0.065*
N5 0.3973 (2) 0.6845 (2) −0.03736 (9) 0.0492 (5)
N6 0.5370 (2) 0.7802 (2) −0.00763 (10) 0.0536 (5)
C7 0.4043 (4) 0.7150 (5) −0.23453 (15) 0.1142 (13)
H7A 0.4826 0.7624 −0.2622 0.171*
H7B 0.2932 0.7669 −0.2449 0.171*
H7C 0.3906 0.6043 −0.2460 0.171*
C8 0.4763 (3) 0.7329 (4) −0.15769 (12) 0.0706 (8)
H8A 0.5896 0.6822 −0.1480 0.085*
H8B 0.4929 0.8450 −0.1469 0.085*
C9 0.3637 (3) 0.6635 (3) −0.11018 (12) 0.0529 (6)
C10 0.2640 (3) 0.6153 (3) −0.00883 (11) 0.0512 (6)
C11 0.5946 (3) 0.7675 (3) 0.05793 (13) 0.0555 (6)
H11 0.5433 0.6957 0.0850 0.067*
C12 0.7417 (3) 0.8648 (3) 0.09174 (11) 0.0499 (6)
C13 0.8090 (3) 0.8408 (3) 0.16278 (12) 0.0648 (7)
H13 0.7607 0.7634 0.1881 0.078*
C14 0.9473 (3) 0.9307 (3) 0.19634 (12) 0.0689 (7)
H14 0.9920 0.9155 0.2441 0.083*
C15 1.0162 (3) 1.0415 (3) 0.15780 (13) 0.0594 (6)
C16 0.9559 (3) 1.0674 (3) 0.08733 (12) 0.0569 (6)
H16 1.0078 1.1429 0.0623 0.068*
C17 0.8163 (3) 0.9789 (3) 0.05422 (12) 0.0521 (6)
H17 0.7723 0.9960 0.0065 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0555 (4) 0.1101 (6) 0.0457 (4) −0.0195 (4) 0.0028 (3) −0.0027 (3)
F2 0.0719 (10) 0.1093 (13) 0.0787 (11) −0.0335 (9) −0.0044 (8) −0.0223 (9)
N3 0.0501 (11) 0.0773 (14) 0.0440 (11) −0.0060 (10) 0.0019 (9) −0.0030 (10)
N4 0.0456 (10) 0.0688 (13) 0.0461 (11) −0.0116 (9) 0.0020 (8) 0.0004 (9)
N5 0.0397 (10) 0.0599 (12) 0.0443 (11) −0.0034 (9) −0.0035 (8) 0.0005 (9)
N6 0.0432 (10) 0.0618 (12) 0.0517 (12) −0.0058 (9) −0.0035 (9) −0.0017 (9)
C7 0.093 (2) 0.192 (4) 0.059 (2) −0.030 (2) 0.0190 (17) 0.000 (2)
C8 0.0578 (15) 0.099 (2) 0.0547 (16) −0.0130 (14) 0.0075 (12) 0.0037 (14)
C9 0.0456 (13) 0.0638 (15) 0.0466 (14) 0.0002 (11) −0.0002 (10) 0.0019 (11)
C10 0.0416 (12) 0.0599 (14) 0.0488 (13) −0.0004 (11) −0.0023 (10) 0.0010 (11)
C11 0.0431 (12) 0.0637 (16) 0.0551 (15) −0.0021 (11) −0.0050 (11) 0.0101 (12)
C12 0.0409 (11) 0.0600 (15) 0.0462 (13) −0.0001 (11) −0.0002 (10) 0.0006 (11)
C13 0.0508 (14) 0.0891 (19) 0.0507 (15) −0.0103 (13) −0.0026 (11) 0.0105 (13)
C14 0.0545 (14) 0.103 (2) 0.0444 (14) −0.0125 (14) −0.0050 (11) 0.0015 (14)
C15 0.0436 (13) 0.0717 (17) 0.0591 (15) −0.0072 (12) −0.0017 (11) −0.0137 (13)
C16 0.0531 (13) 0.0570 (15) 0.0601 (15) −0.0048 (11) 0.0082 (11) −0.0028 (12)
C17 0.0516 (13) 0.0573 (14) 0.0449 (12) 0.0041 (11) 0.0007 (10) −0.0003 (11)

Geometric parameters (Å, º)

S1—C10 1.674 (2) C8—H8A 0.9700
F2—C15 1.358 (3) C8—H8B 0.9700
N3—C9 1.295 (3) C11—C12 1.467 (3)
N3—N4 1.374 (2) C11—H11 0.9300
N4—C10 1.341 (3) C12—C17 1.385 (3)
N4—H4 0.8600 C12—C13 1.387 (3)
N5—C10 1.382 (3) C13—C14 1.383 (3)
N5—C9 1.385 (3) C13—H13 0.9300
N5—N6 1.396 (2) C14—C15 1.355 (3)
N6—C11 1.263 (3) C14—H14 0.9300
C7—C8 1.490 (4) C15—C16 1.368 (3)
C7—H7A 0.9600 C16—C17 1.381 (3)
C7—H7B 0.9600 C16—H16 0.9300
C7—H7C 0.9600 C17—H17 0.9300
C8—C9 1.487 (3)
C9—N3—N4 104.05 (17) N4—C10—S1 127.43 (17)
C10—N4—N3 114.55 (18) N5—C10—S1 130.33 (17)
C10—N4—H4 122.7 N6—C11—C12 120.7 (2)
N3—N4—H4 122.7 N6—C11—H11 119.7
C10—N5—C9 108.50 (18) C12—C11—H11 119.7
C10—N5—N6 132.02 (18) C17—C12—C13 119.1 (2)
C9—N5—N6 118.99 (18) C17—C12—C11 121.6 (2)
C11—N6—N5 118.52 (19) C13—C12—C11 119.2 (2)
C8—C7—H7A 109.5 C14—C13—C12 120.7 (2)
C8—C7—H7B 109.5 C14—C13—H13 119.6
H7A—C7—H7B 109.5 C12—C13—H13 119.6
C8—C7—H7C 109.5 C15—C14—C13 118.3 (2)
H7A—C7—H7C 109.5 C15—C14—H14 120.9
H7B—C7—H7C 109.5 C13—C14—H14 120.9
C9—C8—C7 113.6 (2) C14—C15—F2 119.3 (2)
C9—C8—H8A 108.8 C14—C15—C16 123.0 (2)
C7—C8—H8A 108.8 F2—C15—C16 117.7 (2)
C9—C8—H8B 108.8 C15—C16—C17 118.6 (2)
C7—C8—H8B 108.8 C15—C16—H16 120.7
H8A—C8—H8B 107.7 C17—C16—H16 120.7
N3—C9—N5 110.71 (19) C16—C17—C12 120.3 (2)
N3—C9—C8 126.9 (2) C16—C17—H17 119.9
N5—C9—C8 122.3 (2) C12—C17—H17 119.9
N4—C10—N5 102.12 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4···S1i 0.86 2.48 3.3275 (19) 168
C11—H11···S1 0.93 2.55 3.222 (3) 129

Symmetry code: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6709).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Devarajegowda, H. C., Jeyaseelan, S., Sumangala, V., Bojapoojary, & Nayak, S. P. (2010). Acta Cryst. E66, o2512–o2513. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015346/hb6709sup1.cif

e-68-o1407-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015346/hb6709Isup2.hkl

e-68-o1407-Isup2.hkl (105.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015346/hb6709Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES