Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1408. doi: 10.1107/S1600536812015607

2-Chloro-N-(2,6-dimethyl­phen­yl)benzamide

Vinola Z Rodrigues a, B Thimme Gowda a,*, Július Sivý b, Viktor Vrábel c, Jozef Kožíšek c
PMCID: PMC3344534  PMID: 22590296

Abstract

In the title compound, C15H14ClNO, the dihedral angle between the benzoyl and the aniline rings is 3.30 (18)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains running along the a axis.

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003); Gowda et al. (2000, 2007, 2008); Saeed et al. (2010), on N-chloro­aryl­sulfonamides, see: Jyothi & Gowda (2004) and on N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006).graphic file with name e-68-o1408-scheme1.jpg

Experimental  

Crystal data  

  • C15H14ClNO

  • M r = 259.72

  • Monoclinic, Inline graphic

  • a = 4.8322 (3) Å

  • b = 12.7817 (10) Å

  • c = 21.8544 (12) Å

  • β = 90.778 (5)°

  • V = 1349.69 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.51 × 0.30 × 0.11 mm

Data collection  

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] T min = 0.907, T max = 0.971

  • 18665 measured reflections

  • 2469 independent reflections

  • 1735 reflections with I > 2σ(I)

  • R int = 0.081

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.092

  • wR(F 2) = 0.248

  • S = 1.12

  • 2469 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015607/bt5865sup1.cif

e-68-o1408-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015607/bt5865Isup2.hkl

e-68-o1408-Isup2.hkl (120.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015607/bt5865Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (2) 1.96 (2) 2.818 (4) 172 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi for award of an RFSMS research fellowship. JS, VV and JK thank the Grant Agencies for their financial support (VEGA Grant Agency of Slovak Ministry of Education 1/0679/11; Research and Development Agency of Slovakia (APVV-0202–10) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000, 2007, 2008; Saeed et al., 2010), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of 2-chloro-N-(2,6-dimethylphenyl)benzamide has been determined (Fig. 1).

In the title compound, one of the ortho-methyl groups in the aniline ring is positioned syn to the N—H bond, while the other ortho- methyl group is positioned anti to the N—H bond, the latter and the C=O bond being anti to each other. Further, the amide oxygen is syn to the ortho-chloro group in the benzoyl ring, similar to that observed in 2-chloro-N-(2,6-dichlorophenyl)benzamide (Gowda et al., 2008). In the title compound, the amide group forms dihedral angles of 63.26 (22)° and 59.88 (23)°, respectively, with the 2-chlorobenzoyl and the 2,6-dimethyl- anilino rings, while the angle between the benzoyl and the anilino rings is 3.46 (17)°.

In the crystal structure, intermolecular N1—H1···O1 hydrogen bonds (Table 1) link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by a method similar to the one described by Gowda et al. (2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Rod like colourless single crystals of the title compound used in the X-ray diffraction studies were obtained by slow evaporation of the solvent from its ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

Hydrogen atoms were placed in calculated positions with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was visible in a difference map and refined with the N—H distance restrained to 0.86 (1) Å. The Uiso(H) values were set at 1.2Ueq (C-aromatic, N) or 1.5Ueq (C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing view of the title compound. Molecular links along a-axis are generated by N–H···O hydrogen bonds which are shown by dashed lines. H atoms have been omitted for clarity.

Crystal data

C15H14ClNO F(000) = 544
Mr = 259.72 Dx = 1.278 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3462 reflections
a = 4.8322 (3) Å θ = 3.7–29.5°
b = 12.7817 (10) Å µ = 0.27 mm1
c = 21.8544 (12) Å T = 295 K
β = 90.778 (5)° Rod, colourless
V = 1349.69 (15) Å3 0.51 × 0.30 × 0.11 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 2469 independent reflections
Graphite monochromator 1735 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1 Rint = 0.081
ω scans θmax = 25.3°, θmin = 4.2°
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)] h = −5→5
Tmin = 0.907, Tmax = 0.971 k = −15→15
18665 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.080P)2 + 2.4052P] where P = (Fo2 + 2Fc2)/3
2469 reflections (Δ/σ)max < 0.001
168 parameters Δρmax = 0.50 e Å3
1 restraint Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5223 (8) 0.2456 (4) 0.47475 (19) 0.0494 (10)
C2 0.3612 (11) 0.3360 (4) 0.4743 (2) 0.0660 (13)
C3 0.3033 (14) 0.3824 (5) 0.5300 (3) 0.0892 (19)
H3 0.1927 0.4419 0.5307 0.107*
C4 0.4038 (14) 0.3431 (5) 0.5834 (3) 0.094 (2)
H4 0.3632 0.3761 0.6202 0.113*
C5 0.5672 (11) 0.2539 (5) 0.5836 (2) 0.0720 (15)
H5 0.6349 0.2271 0.6204 0.086*
C6 0.6293 (9) 0.2050 (4) 0.5296 (2) 0.0528 (11)
C7 0.8109 (11) 0.1086 (4) 0.5297 (2) 0.0720 (15)
H7A 0.8096 0.0771 0.5696 0.108*
H7B 0.9967 0.1281 0.5197 0.108*
H7C 0.7417 0.0596 0.5 0.108*
C8 0.2532 (14) 0.3832 (4) 0.4152 (3) 0.0830 (17)
H8A 0.2349 0.4575 0.42 0.124*
H8B 0.0759 0.3534 0.4052 0.124*
H8C 0.3803 0.3685 0.3829 0.124*
C9 0.3874 (8) 0.1464 (3) 0.38474 (18) 0.0438 (10)
C10 0.4897 (8) 0.0847 (4) 0.3306 (2) 0.0533 (11)
C11 0.6640 (10) 0.0015 (4) 0.3394 (2) 0.0661 (13)
H11 0.7286 −0.0141 0.3786 0.079*
C12 0.7455 (13) −0.0601 (5) 0.2903 (3) 0.0911 (19)
H12 0.8633 −0.1166 0.2968 0.109*
C13 0.6524 (15) −0.0373 (6) 0.2326 (3) 0.097 (2)
H13 0.7055 −0.0789 0.1998 0.116*
C14 0.4789 (14) 0.0476 (6) 0.2226 (3) 0.0887 (19)
H14 0.4174 0.0643 0.1833 0.106*
C15 0.3997 (10) 0.1063 (4) 0.2718 (2) 0.0649 (13)
N1 0.5818 (7) 0.1927 (3) 0.41875 (15) 0.0460 (9)
H1 0.756 (4) 0.180 (4) 0.415 (2) 0.055*
O1 0.1424 (6) 0.1494 (3) 0.39531 (15) 0.0656 (10)
Cl1 0.1880 (4) 0.21406 (14) 0.25687 (7) 0.0994 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.050 (2) 0.053 (3) 0.045 (2) 0.0038 (19) 0.0043 (18) −0.0021 (19)
C2 0.079 (3) 0.063 (3) 0.057 (3) 0.019 (3) 0.001 (2) 0.000 (2)
C3 0.119 (5) 0.076 (4) 0.073 (4) 0.039 (4) 0.007 (3) −0.022 (3)
C4 0.127 (5) 0.096 (5) 0.061 (4) 0.029 (4) 0.013 (3) −0.028 (3)
C5 0.086 (3) 0.089 (4) 0.041 (3) 0.002 (3) −0.001 (2) −0.006 (3)
C6 0.056 (2) 0.056 (3) 0.046 (2) 0.004 (2) 0.0018 (19) −0.002 (2)
C7 0.079 (3) 0.082 (4) 0.055 (3) 0.018 (3) −0.009 (2) 0.007 (3)
C8 0.118 (5) 0.065 (3) 0.066 (3) 0.033 (3) −0.004 (3) 0.006 (3)
C9 0.041 (2) 0.052 (3) 0.039 (2) 0.0011 (18) −0.0020 (16) 0.0078 (18)
C10 0.042 (2) 0.070 (3) 0.048 (2) −0.005 (2) 0.0017 (18) −0.005 (2)
C11 0.061 (3) 0.070 (3) 0.067 (3) 0.001 (3) 0.002 (2) −0.016 (3)
C12 0.087 (4) 0.079 (4) 0.107 (5) 0.007 (3) 0.012 (4) −0.036 (4)
C13 0.110 (5) 0.108 (5) 0.073 (4) −0.019 (4) 0.020 (4) −0.046 (4)
C14 0.101 (4) 0.112 (5) 0.053 (3) −0.019 (4) 0.000 (3) −0.019 (3)
C15 0.068 (3) 0.074 (3) 0.052 (3) −0.012 (3) 0.004 (2) −0.003 (2)
N1 0.0393 (17) 0.056 (2) 0.0428 (19) 0.0052 (16) 0.0047 (15) −0.0015 (16)
O1 0.0413 (17) 0.093 (3) 0.062 (2) 0.0015 (16) 0.0020 (14) −0.0100 (18)
Cl1 0.1313 (14) 0.1054 (13) 0.0612 (9) 0.0210 (10) −0.0121 (8) 0.0189 (8)

Geometric parameters (Å, º)

C1—C2 1.394 (6) C8—H8C 0.96
C1—C6 1.398 (6) C9—O1 1.210 (5)
C1—N1 1.431 (5) C9—N1 1.329 (5)
C2—C3 1.386 (7) C9—C10 1.511 (6)
C2—C8 1.511 (7) C10—C11 1.369 (7)
C3—C4 1.355 (9) C10—C15 1.379 (7)
C3—H3 0.93 C11—C12 1.392 (8)
C4—C5 1.387 (8) C11—H11 0.93
C4—H4 0.93 C12—C13 1.365 (10)
C5—C6 1.373 (7) C12—H12 0.93
C5—H5 0.93 C13—C14 1.387 (9)
C6—C7 1.512 (7) C13—H13 0.93
C7—H7A 0.96 C14—C15 1.370 (8)
C7—H7B 0.96 C14—H14 0.93
C7—H7C 0.96 C15—Cl1 1.744 (6)
C8—H8A 0.96 N1—H1 0.860 (19)
C8—H8B 0.96
C2—C1—C6 120.9 (4) C2—C8—H8C 109.5
C2—C1—N1 120.3 (4) H8A—C8—H8C 109.5
C6—C1—N1 118.8 (4) H8B—C8—H8C 109.5
C3—C2—C1 117.9 (5) O1—C9—N1 124.4 (4)
C3—C2—C8 120.6 (5) O1—C9—C10 119.8 (4)
C1—C2—C8 121.5 (4) N1—C9—C10 115.7 (3)
C4—C3—C2 121.6 (5) C11—C10—C15 118.2 (5)
C4—C3—H3 119.2 C11—C10—C9 120.2 (4)
C2—C3—H3 119.2 C15—C10—C9 121.6 (4)
C3—C4—C5 120.2 (5) C10—C11—C12 120.7 (6)
C3—C4—H4 119.9 C10—C11—H11 119.6
C5—C4—H4 119.9 C12—C11—H11 119.6
C6—C5—C4 120.3 (5) C13—C12—C11 119.9 (6)
C6—C5—H5 119.9 C13—C12—H12 120
C4—C5—H5 119.9 C11—C12—H12 120
C5—C6—C1 119.0 (4) C12—C13—C14 120.2 (6)
C5—C6—C7 120.2 (4) C12—C13—H13 119.9
C1—C6—C7 120.8 (4) C14—C13—H13 119.9
C6—C7—H7A 109.5 C15—C14—C13 118.7 (6)
C6—C7—H7B 109.5 C15—C14—H14 120.7
H7A—C7—H7B 109.5 C13—C14—H14 120.7
C6—C7—H7C 109.5 C14—C15—C10 122.3 (6)
H7A—C7—H7C 109.5 C14—C15—Cl1 117.1 (5)
H7B—C7—H7C 109.5 C10—C15—Cl1 120.6 (4)
C2—C8—H8A 109.5 C9—N1—C1 122.7 (3)
C2—C8—H8B 109.5 C9—N1—H1 124 (3)
H8A—C8—H8B 109.5 C1—N1—H1 112 (3)
C6—C1—C2—C3 −2.0 (8) N1—C9—C10—C15 −122.9 (5)
N1—C1—C2—C3 178.2 (5) C15—C10—C11—C12 −0.6 (7)
C6—C1—C2—C8 177.6 (5) C9—C10—C11—C12 175.8 (5)
N1—C1—C2—C8 −2.2 (8) C10—C11—C12—C13 0.3 (9)
C1—C2—C3—C4 1.4 (10) C11—C12—C13—C14 0.6 (10)
C8—C2—C3—C4 −178.2 (7) C12—C13—C14—C15 −1.2 (10)
C2—C3—C4—C5 −0.6 (11) C13—C14—C15—C10 0.9 (9)
C3—C4—C5—C6 0.3 (10) C13—C14—C15—Cl1 178.6 (5)
C4—C5—C6—C1 −0.9 (8) C11—C10—C15—C14 0.0 (7)
C4—C5—C6—C7 179.1 (5) C9—C10—C15—C14 −176.4 (5)
C2—C1—C6—C5 1.8 (7) C11—C10—C15—Cl1 −177.6 (4)
N1—C1—C6—C5 −178.4 (4) C9—C10—C15—Cl1 6.0 (6)
C2—C1—C6—C7 −178.2 (5) O1—C9—N1—C1 4.6 (7)
N1—C1—C6—C7 1.6 (7) C10—C9—N1—C1 −173.9 (4)
O1—C9—C10—C11 −117.8 (5) C2—C1—N1—C9 −65.8 (6)
N1—C9—C10—C11 60.8 (6) C6—C1—N1—C9 114.4 (5)
O1—C9—C10—C15 58.5 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 (2) 1.96 (2) 2.818 (4) 172 (4)

Symmetry code: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5865).

References

  1. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.
  6. Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.
  7. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1493. [DOI] [PMC free article] [PubMed]
  8. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  10. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015607/bt5865sup1.cif

e-68-o1408-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015607/bt5865Isup2.hkl

e-68-o1408-Isup2.hkl (120.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015607/bt5865Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES