Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1409. doi: 10.1107/S1600536812015140

(1H-1,2,3-Benzotriazol-1-yl)methyl benzoate

Ting Guo a, Gang Cao a,*, Sen Xu b
PMCID: PMC3344535  PMID: 22590297

Abstract

In the title compound, C14H11N3O2, the dihedral angle between the phenyl ring and the benzotriazole ring system is 76.80 (19)° and the mol­ecule has an L-shaped conformation. In the crystal, weak aromatic π–π stacking is observed, the closest centroid–centroid distance being 3.754 (2) Å.

Related literature  

For related structures and the synthesis, see: Xu & Shen (2012); Zeng & Jian (2009). For applications of benzotriazole derivatives, see: Wan & Lv (2010).graphic file with name e-68-o1409-scheme1.jpg

Experimental  

Crystal data  

  • C14H11N3O2

  • M r = 253.26

  • Monoclinic, Inline graphic

  • a = 10.7181 (4) Å

  • b = 6.4826 (2) Å

  • c = 18.7076 (7) Å

  • β = 96.773 (3)°

  • V = 1290.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.18 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.982, T max = 0.984

  • 9412 measured reflections

  • 2268 independent reflections

  • 1352 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.162

  • S = 1.06

  • 2268 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015140/hb6707sup1.cif

e-68-o1409-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015140/hb6707Isup2.hkl

e-68-o1409-Isup2.hkl (111.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015140/hb6707Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Surface Project Foundation of Nanjing Military Region (10MA095), the Jinling Hospital Foundation of Nanjing Province of China (2009Q021) and the Surface Project Foundation of Nanjing Military Region (11MA099).

supplementary crystallographic information

Comment

Benzotriazole derivatives have been broadly researched due to their potential applications (Wan & Lv, 2010). Herein, we have synthesized a new benzotriazole derivative(Fig. 1), C12H15N3O2. Bond lengths and angles are comparable to other reported benzotriazol-1-yl intermediate derivatives (Zeng & Jian, 2009; Xu & Shen, 2012). Furthermore, the dihedral angle between the mean planes of the phenyl and benzotriazole rings is 76.80 (19)°. In the crystal, π–π stacking is observed between the inversion related phenyl rings of benzotriazolyl, the closest centroid-centroid distance being 3.754 (2)Å.

Experimental

The title compound synthesis method is similar to that reported by Xu & Shen (2012), but methylene chloride was replaced by benzoyl chloride

Refinement

The H atoms on the CH2 group were located by difference maps and freely refined without constraints. H atoms bonded to the remaining C atoms were included in calculated positions and treated as riding with C–H =0.93Å and Uiso(H)=1.2Ueq(aromatic C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Crystal data

C14H11N3O2 F(000) = 528
Mr = 253.26 Dx = 1.303 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1419 reflections
a = 10.7181 (4) Å θ = 2.7–21.6°
b = 6.4826 (2) Å µ = 0.09 mm1
c = 18.7076 (7) Å T = 296 K
β = 96.773 (3)° Block, colorless
V = 1290.75 (8) Å3 0.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2268 independent reflections
Radiation source: fine-focus sealed tube 1352 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 2.2°
phi and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −7→7
Tmin = 0.982, Tmax = 0.984 l = −22→22
9412 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.4539P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2268 reflections Δρmax = 0.14 e Å3
181 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0073 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7169 (3) 0.5849 (5) 0.27655 (16) 0.0599 (8)
C2 0.8234 (3) 0.7177 (6) 0.30445 (18) 0.0672 (9)
C3 0.9100 (4) 0.6382 (8) 0.3586 (2) 0.1029 (14)
H3 0.8998 0.5062 0.3765 0.123*
C4 1.0110 (5) 0.7578 (13) 0.3853 (3) 0.145 (2)
H4 1.0696 0.7062 0.4215 0.174*
C5 1.0258 (6) 0.9545 (14) 0.3586 (4) 0.157 (3)
H5 1.0944 1.0342 0.3769 0.189*
C6 0.9397 (5) 1.0320 (8) 0.3054 (3) 0.1179 (18)
H6 0.9497 1.1645 0.2878 0.141*
C7 0.8391 (3) 0.9146 (6) 0.2781 (2) 0.0814 (11)
H7 0.7810 0.9671 0.2418 0.098*
C8 0.5351 (3) 0.5700 (6) 0.19118 (18) 0.0614 (9)
C9 0.6278 (3) 0.2459 (5) 0.05103 (16) 0.0564 (8)
C10 0.6200 (3) 0.4440 (4) 0.07805 (14) 0.0505 (7)
C11 0.6600 (3) 0.6164 (5) 0.04401 (16) 0.0608 (9)
H11 0.6543 0.7485 0.0628 0.073*
C12 0.7088 (3) 0.5800 (5) −0.01930 (17) 0.0726 (10)
H12 0.7380 0.6911 −0.0441 0.087*
C13 0.7165 (3) 0.3815 (6) −0.04810 (17) 0.0724 (10)
H13 0.7504 0.3649 −0.0913 0.087*
C14 0.6758 (3) 0.2130 (5) −0.01465 (17) 0.0686 (9)
H14 0.6796 0.0817 −0.0343 0.082*
H1M 0.482 (3) 0.679 (5) 0.1671 (18) 0.078 (11)*
H2M 0.491 (3) 0.493 (5) 0.2271 (18) 0.087 (11)*
N1 0.5679 (2) 0.4166 (4) 0.14069 (12) 0.0571 (7)
N2 0.5446 (3) 0.2141 (4) 0.15102 (14) 0.0729 (8)
N3 0.5796 (3) 0.1092 (4) 0.09718 (15) 0.0752 (9)
O1 0.64454 (19) 0.6783 (3) 0.22152 (10) 0.0584 (6)
O2 0.6951 (2) 0.4154 (4) 0.29774 (13) 0.0830 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.065 (2) 0.067 (2) 0.0494 (17) 0.0088 (18) 0.0141 (16) 0.0005 (16)
C2 0.055 (2) 0.090 (3) 0.057 (2) −0.0006 (19) 0.0115 (17) −0.0160 (19)
C3 0.071 (3) 0.155 (4) 0.080 (3) 0.016 (3) −0.003 (2) −0.014 (3)
C4 0.075 (4) 0.240 (8) 0.114 (5) 0.002 (5) −0.015 (3) −0.043 (5)
C5 0.075 (4) 0.228 (8) 0.170 (7) −0.039 (5) 0.018 (4) −0.089 (7)
C6 0.085 (3) 0.125 (4) 0.152 (5) −0.041 (3) 0.050 (3) −0.057 (4)
C7 0.072 (3) 0.089 (3) 0.088 (3) −0.018 (2) 0.030 (2) −0.026 (2)
C8 0.061 (2) 0.070 (2) 0.0534 (19) 0.0043 (19) 0.0083 (18) −0.0129 (18)
C9 0.064 (2) 0.0560 (17) 0.0497 (17) 0.0003 (15) 0.0079 (16) −0.0034 (14)
C10 0.0551 (19) 0.0539 (17) 0.0423 (15) 0.0009 (14) 0.0045 (14) −0.0016 (13)
C11 0.076 (2) 0.0547 (18) 0.0516 (17) −0.0021 (16) 0.0078 (17) −0.0012 (14)
C12 0.085 (3) 0.079 (2) 0.0553 (19) −0.0057 (19) 0.0155 (19) 0.0080 (18)
C13 0.081 (3) 0.092 (3) 0.0465 (18) 0.006 (2) 0.0182 (17) −0.0043 (18)
C14 0.081 (2) 0.070 (2) 0.0552 (19) 0.0090 (18) 0.0105 (18) −0.0145 (17)
N1 0.0712 (18) 0.0564 (15) 0.0454 (13) 0.0007 (13) 0.0136 (13) −0.0026 (12)
N2 0.103 (2) 0.0594 (17) 0.0583 (17) −0.0114 (15) 0.0191 (16) −0.0007 (14)
N3 0.110 (2) 0.0569 (16) 0.0611 (17) −0.0071 (15) 0.0225 (17) −0.0055 (14)
O1 0.0718 (15) 0.0583 (12) 0.0450 (11) −0.0001 (11) 0.0064 (11) −0.0033 (10)
O2 0.0905 (19) 0.0774 (16) 0.0804 (17) 0.0015 (13) 0.0077 (14) 0.0232 (13)

Geometric parameters (Å, º)

C1—O2 1.200 (3) C8—H1M 0.98 (3)
C1—O1 1.356 (3) C8—H2M 1.00 (3)
C1—C2 1.476 (5) C9—N3 1.379 (4)
C2—C7 1.385 (5) C9—C10 1.386 (4)
C2—C3 1.389 (5) C9—C14 1.404 (4)
C3—C4 1.377 (7) C10—N1 1.367 (3)
C3—H3 0.9300 C10—C11 1.380 (4)
C4—C5 1.385 (9) C11—C12 1.371 (4)
C4—H4 0.9300 C11—H11 0.9300
C5—C6 1.371 (8) C12—C13 1.401 (4)
C5—H5 0.9300 C12—H12 0.9300
C6—C7 1.369 (6) C13—C14 1.357 (4)
C6—H6 0.9300 C13—H13 0.9300
C7—H7 0.9300 C14—H14 0.9300
C8—O1 1.426 (4) N1—N2 1.355 (3)
C8—N1 1.443 (4) N2—N3 1.306 (3)
O2—C1—O1 122.9 (3) H1M—C8—H2M 112 (3)
O2—C1—C2 126.1 (3) N3—C9—C10 108.9 (3)
O1—C1—C2 111.0 (3) N3—C9—C14 130.8 (3)
C7—C2—C3 120.2 (4) C10—C9—C14 120.3 (3)
C7—C2—C1 122.2 (3) N1—C10—C11 133.0 (3)
C3—C2—C1 117.6 (4) N1—C10—C9 103.9 (2)
C4—C3—C2 119.0 (5) C11—C10—C9 123.1 (3)
C4—C3—H3 120.5 C12—C11—C10 115.5 (3)
C2—C3—H3 120.5 C12—C11—H11 122.3
C3—C4—C5 120.4 (7) C10—C11—H11 122.3
C3—C4—H4 119.8 C11—C12—C13 122.4 (3)
C5—C4—H4 119.8 C11—C12—H12 118.8
C6—C5—C4 120.2 (7) C13—C12—H12 118.8
C6—C5—H5 119.9 C14—C13—C12 121.7 (3)
C4—C5—H5 119.9 C14—C13—H13 119.1
C7—C6—C5 120.0 (6) C12—C13—H13 119.1
C7—C6—H6 120.0 C13—C14—C9 116.9 (3)
C5—C6—H6 120.0 C13—C14—H14 121.6
C6—C7—C2 120.2 (5) C9—C14—H14 121.6
C6—C7—H7 119.9 N2—N1—C10 110.4 (2)
C2—C7—H7 119.9 N2—N1—C8 120.7 (3)
O1—C8—N1 110.3 (3) C10—N1—C8 128.8 (3)
O1—C8—H1M 103.6 (18) N3—N2—N1 108.6 (2)
N1—C8—H1M 111.5 (19) N2—N3—C9 108.1 (2)
O1—C8—H2M 114.3 (19) C1—O1—C8 116.9 (3)
N1—C8—H2M 105.7 (19)
O2—C1—C2—C7 −177.9 (3) C11—C12—C13—C14 −0.1 (6)
O1—C1—C2—C7 3.0 (4) C12—C13—C14—C9 −1.2 (5)
O2—C1—C2—C3 2.5 (5) N3—C9—C14—C13 179.8 (3)
O1—C1—C2—C3 −176.6 (3) C10—C9—C14—C13 1.9 (5)
C7—C2—C3—C4 −0.1 (6) C11—C10—N1—N2 −180.0 (3)
C1—C2—C3—C4 179.5 (4) C9—C10—N1—N2 −0.4 (3)
C2—C3—C4—C5 0.1 (8) C11—C10—N1—C8 1.9 (6)
C3—C4—C5—C6 0.1 (10) C9—C10—N1—C8 −178.5 (3)
C4—C5—C6—C7 −0.4 (9) O1—C8—N1—N2 119.7 (3)
C5—C6—C7—C2 0.4 (6) O1—C8—N1—C10 −62.3 (4)
C3—C2—C7—C6 −0.1 (5) C10—N1—N2—N3 −0.1 (4)
C1—C2—C7—C6 −179.7 (3) C8—N1—N2—N3 178.3 (3)
N3—C9—C10—N1 0.7 (3) N1—N2—N3—C9 0.5 (4)
C14—C9—C10—N1 179.0 (3) C10—C9—N3—N2 −0.8 (4)
N3—C9—C10—C11 −179.7 (3) C14—C9—N3—N2 −178.9 (3)
C14—C9—C10—C11 −1.3 (5) O2—C1—O1—C8 3.2 (4)
N1—C10—C11—C12 179.6 (3) C2—C1—O1—C8 −177.7 (2)
C9—C10—C11—C12 0.0 (5) N1—C8—O1—C1 −81.1 (3)
C10—C11—C12—C13 0.7 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6707).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wan, J. & Lv, P.-C. (2010). J. Chem. Inf. Comput. Sci. 122, 597–606.
  6. Xu, S. & Shen, Y. (2012). Acta Cryst. E68, o1066. [DOI] [PMC free article] [PubMed]
  7. Zeng, W.-L. & Jian, F.-F. (2009). Acta Cryst. E65, o2165. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015140/hb6707sup1.cif

e-68-o1409-sup1.cif (16.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015140/hb6707Isup2.hkl

e-68-o1409-Isup2.hkl (111.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015140/hb6707Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES