Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1410. doi: 10.1107/S1600536812015450

2,5-Dimethyl-3-(4-methyl­phenyl­sulfin­yl)-1-benzofuran

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3344536  PMID: 22590298

Abstract

In the title compound, C17H16O2S, the 4-methyl­phenyl ring makes a dihedral angle of 88.28 (5)° with the mean plane [mean deviation = 0.009 (1) Å] of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯π inter­actions.

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2010a ,b , 2012).graphic file with name e-68-o1410-scheme1.jpg

Experimental  

Crystal data  

  • C17H16O2S

  • M r = 284.36

  • Orthorhombic, Inline graphic

  • a = 13.072 (2) Å

  • b = 6.1790 (11) Å

  • c = 17.979 (3) Å

  • V = 1452.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.37 × 0.23 × 0.14 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.624, T max = 0.746

  • 13920 measured reflections

  • 3587 independent reflections

  • 3101 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.090

  • S = 1.03

  • 3587 reflections

  • 184 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 1729 Friedel pairs

  • Flack parameter: −0.01 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015450/fy2054sup1.cif

e-68-o1410-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015450/fy2054Isup2.hkl

e-68-o1410-Isup2.hkl (175.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015450/fy2054Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2i 0.95 2.60 3.334 (2) 134
C17—H17B⋯O1ii 0.98 2.52 3.387 (3) 148
C10—H10BCgiii 0.98 2.74 3.538 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

As a part of our ongoing study of 2,5-dimethyl-1-benzofuran derivatives containing 3-(4-fluorophenylsulfinyl) (Choi et al., 2010a), 3-(4-chlorophenylsulfinyl) (Choi et al., 2010b) and 3-(4-bromophenylsulfinyl) (Choi et al., 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 4–methylphenyl ring and the mean plane of the benzofurn fragment is 88.28 (5)°. In the crystal structure, molecules are connected by weak intermolecular C—H···O hydrogen bonds (Fig. 2 & Table 1) and C—H···π interactions (Fig. 3 & Table 1, Cg is the centroid of the C2–C7 benzene ring).

Experimental

3-Chloroperoxybenzoic acid (77%, 291 mg, 1.3 mmol) was added in small portions to a stirred solution of 2,5-dimethyl-3-(4-methylphenylsulfanyl)-1-benzofuran (322 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane:ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 412–413 K; Rf = 0.44 (hexane:ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen bonding were omitted for clarity. [Symmetry codes: (i) x - 1/2, - y + 1/2, z ; (ii) - x + 1, - y + 1, z + 1/2; (iv) x + 1/2, - y + 1/2, z; (v) - x + 1, - y + 1, z - 1/2.]

Fig. 3.

Fig. 3.

A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen bonding were omitted for clarity. [Symmetry codes: (iii) x, y - 1, z; (vi) x, y + 1, z.]

Crystal data

C17H16O2S F(000) = 600
Mr = 284.36 Dx = 1.301 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 4157 reflections
a = 13.072 (2) Å θ = 2.3–24.8°
b = 6.1790 (11) Å µ = 0.22 mm1
c = 17.979 (3) Å T = 173 K
V = 1452.2 (4) Å3 Block, colourless
Z = 4 0.37 × 0.23 × 0.14 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3587 independent reflections
Radiation source: rotating anode 3101 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.036
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 2.3°
φ and ω scans h = −17→16
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −8→8
Tmin = 0.624, Tmax = 0.746 l = −23→23
13920 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.1605P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3587 reflections Δρmax = 0.20 e Å3
184 parameters Δρmin = −0.24 e Å3
1 restraint Absolute structure: Flack (1983), 1729 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.68387 (4) 0.23443 (8) 0.43774 (3) 0.05093 (14)
O1 0.60322 (10) 0.2839 (2) 0.22842 (8) 0.0447 (3)
O2 0.79502 (12) 0.2480 (3) 0.45451 (10) 0.0708 (5)
C1 0.66469 (12) 0.3081 (3) 0.34471 (11) 0.0379 (4)
C2 0.70684 (12) 0.4873 (2) 0.30262 (10) 0.0332 (3)
C3 0.77327 (12) 0.6586 (3) 0.31664 (11) 0.0372 (4)
H3 0.8017 0.6784 0.3648 0.045*
C4 0.79736 (14) 0.7997 (3) 0.25939 (12) 0.0424 (4)
C5 0.75333 (16) 0.7692 (3) 0.18910 (12) 0.0482 (5)
H5 0.7702 0.8677 0.1504 0.058*
C6 0.68661 (15) 0.6026 (3) 0.17362 (10) 0.0464 (4)
H6 0.6566 0.5850 0.1259 0.056*
C7 0.66586 (12) 0.4626 (3) 0.23164 (10) 0.0373 (4)
C8 0.60458 (13) 0.1927 (3) 0.29798 (12) 0.0419 (4)
C9 0.87197 (17) 0.9835 (3) 0.27175 (15) 0.0580 (6)
H9A 0.8709 1.0260 0.3243 0.087*
H9B 0.8523 1.1073 0.2408 0.087*
H9C 0.9410 0.9362 0.2582 0.087*
C10 0.54077 (15) −0.0042 (3) 0.30769 (17) 0.0602 (6)
H10A 0.5488 −0.0592 0.3585 0.090*
H10B 0.5626 −0.1152 0.2722 0.090*
H10C 0.4688 0.0320 0.2988 0.090*
C11 0.62497 (13) 0.4678 (3) 0.47906 (10) 0.0407 (4)
C12 0.52077 (14) 0.4978 (3) 0.47194 (11) 0.0455 (4)
H12 0.4809 0.3981 0.4440 0.055*
C13 0.47520 (14) 0.6721 (4) 0.50530 (11) 0.0473 (4)
H13 0.4035 0.6923 0.5000 0.057*
C14 0.53160 (17) 0.8206 (3) 0.54687 (10) 0.0472 (5)
C15 0.63554 (18) 0.7839 (4) 0.55478 (11) 0.0529 (5)
H15 0.6753 0.8810 0.5838 0.063*
C16 0.68289 (14) 0.6082 (4) 0.52116 (11) 0.0486 (5)
H16 0.7543 0.5851 0.5271 0.058*
C17 0.4802 (2) 1.0140 (4) 0.58236 (13) 0.0626 (6)
H17A 0.5321 1.1069 0.6053 0.094*
H17B 0.4320 0.9643 0.6205 0.094*
H17C 0.4431 1.0960 0.5443 0.094*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0432 (2) 0.0524 (3) 0.0572 (3) 0.0094 (2) 0.0020 (2) 0.0228 (2)
O1 0.0372 (7) 0.0416 (7) 0.0554 (8) 0.0033 (5) −0.0021 (6) −0.0123 (6)
O2 0.0427 (8) 0.1013 (12) 0.0683 (12) 0.0268 (8) −0.0071 (7) 0.0186 (9)
C1 0.0299 (8) 0.0329 (8) 0.0510 (10) 0.0048 (6) 0.0042 (7) 0.0049 (7)
C2 0.0281 (7) 0.0322 (7) 0.0393 (9) 0.0079 (6) 0.0039 (6) 0.0027 (7)
C3 0.0280 (8) 0.0372 (8) 0.0463 (10) 0.0022 (6) 0.0015 (7) 0.0002 (7)
C4 0.0330 (10) 0.0349 (9) 0.0592 (12) 0.0053 (7) 0.0113 (8) 0.0065 (8)
C5 0.0470 (12) 0.0485 (11) 0.0491 (12) 0.0105 (8) 0.0163 (9) 0.0134 (8)
C6 0.0486 (11) 0.0535 (11) 0.0372 (10) 0.0151 (9) 0.0034 (8) 0.0018 (8)
C7 0.0311 (8) 0.0378 (8) 0.0429 (9) 0.0078 (7) 0.0009 (7) −0.0067 (7)
C8 0.0281 (9) 0.0335 (8) 0.0642 (12) 0.0062 (7) 0.0052 (8) −0.0022 (8)
C9 0.0430 (11) 0.0409 (10) 0.0902 (17) −0.0045 (9) 0.0144 (10) 0.0083 (10)
C10 0.0396 (10) 0.0380 (10) 0.1032 (19) −0.0061 (8) 0.0087 (12) −0.0085 (11)
C11 0.0326 (9) 0.0529 (10) 0.0367 (9) −0.0013 (7) 0.0003 (7) 0.0173 (8)
C12 0.0329 (9) 0.0591 (11) 0.0445 (10) −0.0029 (8) −0.0024 (8) 0.0038 (9)
C13 0.0319 (9) 0.0677 (12) 0.0422 (10) 0.0019 (9) 0.0002 (8) 0.0051 (9)
C14 0.0505 (12) 0.0567 (11) 0.0344 (9) −0.0048 (9) 0.0035 (8) 0.0120 (8)
C15 0.0536 (13) 0.0640 (13) 0.0411 (10) −0.0184 (10) −0.0084 (9) 0.0090 (9)
C16 0.0321 (9) 0.0685 (12) 0.0451 (11) −0.0071 (9) −0.0069 (8) 0.0181 (9)
C17 0.0751 (15) 0.0605 (13) 0.0521 (13) −0.0027 (12) 0.0094 (11) 0.0035 (10)

Geometric parameters (Å, º)

S1—O2 1.4864 (17) C9—H9B 0.9800
S1—C1 1.751 (2) C9—H9C 0.9800
S1—C11 1.795 (2) C10—H10A 0.9800
O1—C8 1.372 (3) C10—H10B 0.9800
O1—C7 1.376 (2) C10—H10C 0.9800
C1—C8 1.354 (3) C11—C16 1.378 (3)
C1—C2 1.450 (2) C11—C12 1.381 (3)
C2—C3 1.392 (2) C12—C13 1.369 (3)
C2—C7 1.392 (3) C12—H12 0.9500
C3—C4 1.385 (3) C13—C14 1.394 (3)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.401 (3) C14—C15 1.385 (3)
C4—C9 1.513 (3) C14—C17 1.512 (3)
C5—C6 1.378 (3) C15—C16 1.388 (3)
C5—H5 0.9500 C15—H15 0.9500
C6—C7 1.382 (3) C16—H16 0.9500
C6—H6 0.9500 C17—H17A 0.9800
C8—C10 1.485 (2) C17—H17B 0.9800
C9—H9A 0.9800 C17—H17C 0.9800
O2—S1—C1 108.60 (9) H9A—C9—H9C 109.5
O2—S1—C11 106.86 (10) H9B—C9—H9C 109.5
C1—S1—C11 97.17 (8) C8—C10—H10A 109.5
C8—O1—C7 106.49 (14) C8—C10—H10B 109.5
C8—C1—C2 107.41 (17) H10A—C10—H10B 109.5
C8—C1—S1 122.59 (14) C8—C10—H10C 109.5
C2—C1—S1 129.99 (14) H10A—C10—H10C 109.5
C3—C2—C7 119.29 (16) H10B—C10—H10C 109.5
C3—C2—C1 136.31 (17) C16—C11—C12 120.55 (18)
C7—C2—C1 104.40 (15) C16—C11—S1 119.83 (14)
C4—C3—C2 119.07 (17) C12—C11—S1 119.51 (15)
C4—C3—H3 120.5 C13—C12—C11 119.63 (19)
C2—C3—H3 120.5 C13—C12—H12 120.2
C3—C4—C5 119.48 (17) C11—C12—H12 120.2
C3—C4—C9 120.64 (19) C12—C13—C14 121.49 (18)
C5—C4—C9 119.87 (18) C12—C13—H13 119.3
C6—C5—C4 122.87 (18) C14—C13—H13 119.3
C6—C5—H5 118.6 C15—C14—C13 117.8 (2)
C4—C5—H5 118.6 C15—C14—C17 121.5 (2)
C5—C6—C7 116.07 (18) C13—C14—C17 120.7 (2)
C5—C6—H6 122.0 C14—C15—C16 121.39 (19)
C7—C6—H6 122.0 C14—C15—H15 119.3
O1—C7—C6 125.98 (17) C16—C15—H15 119.3
O1—C7—C2 110.81 (16) C11—C16—C15 119.12 (18)
C6—C7—C2 123.22 (17) C11—C16—H16 120.4
C1—C8—O1 110.90 (15) C15—C16—H16 120.4
C1—C8—C10 133.2 (2) C14—C17—H17A 109.5
O1—C8—C10 115.87 (19) C14—C17—H17B 109.5
C4—C9—H9A 109.5 H17A—C17—H17B 109.5
C4—C9—H9B 109.5 C14—C17—H17C 109.5
H9A—C9—H9B 109.5 H17A—C17—H17C 109.5
C4—C9—H9C 109.5 H17B—C17—H17C 109.5
O2—S1—C1—C8 133.66 (16) C1—C2—C7—C6 179.67 (15)
C11—S1—C1—C8 −115.81 (15) C2—C1—C8—O1 −0.62 (18)
O2—S1—C1—C2 −44.98 (18) S1—C1—C8—O1 −179.53 (11)
C11—S1—C1—C2 65.56 (16) C2—C1—C8—C10 −179.34 (18)
C8—C1—C2—C3 −178.81 (18) S1—C1—C8—C10 1.8 (3)
S1—C1—C2—C3 0.0 (3) C7—O1—C8—C1 0.57 (18)
C8—C1—C2—C7 0.41 (17) C7—O1—C8—C10 179.54 (14)
S1—C1—C2—C7 179.21 (13) O2—S1—C11—C16 −4.03 (17)
C7—C2—C3—C4 −0.3 (2) C1—S1—C11—C16 −115.99 (15)
C1—C2—C3—C4 178.80 (17) O2—S1—C11—C12 179.77 (14)
C2—C3—C4—C5 1.0 (2) C1—S1—C11—C12 67.80 (15)
C2—C3—C4—C9 −177.99 (16) C16—C11—C12—C13 1.8 (3)
C3—C4—C5—C6 −0.4 (3) S1—C11—C12—C13 178.02 (15)
C9—C4—C5—C6 178.59 (17) C11—C12—C13—C14 −0.3 (3)
C4—C5—C6—C7 −0.8 (3) C12—C13—C14—C15 −1.3 (3)
C8—O1—C7—C6 179.98 (16) C12—C13—C14—C17 179.07 (18)
C8—O1—C7—C2 −0.30 (17) C13—C14—C15—C16 1.5 (3)
C5—C6—C7—O1 −178.81 (15) C17—C14—C15—C16 −178.94 (19)
C5—C6—C7—C2 1.5 (3) C12—C11—C16—C15 −1.7 (3)
C3—C2—C7—O1 179.32 (13) S1—C11—C16—C15 −177.86 (14)
C1—C2—C7—O1 −0.07 (17) C14—C15—C16—C11 0.0 (3)
C3—C2—C7—C6 −0.9 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C2–C7 benzene ring.

D—H···A D—H H···A D···A D—H···A
C12—H12···O2i 0.95 2.60 3.334 (2) 134
C17—H17B···O1ii 0.98 2.52 3.387 (3) 148
C10—H10B···Cgiii 0.98 2.74 3.538 (3) 139

Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) −x+1, −y+1, z+1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2054).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o584. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o543. [DOI] [PMC free article] [PubMed]
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2551. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015450/fy2054sup1.cif

e-68-o1410-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015450/fy2054Isup2.hkl

e-68-o1410-Isup2.hkl (175.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015450/fy2054Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES