Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1414–o1415. doi: 10.1107/S1600536812015838

2-Amino-4-(4-chloro­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbonitrile

Shaaban K Mohamed a, Mehmet Akkurt b,*, Antar A Abdelhamid a, Kuldip Singh c, M A Allahverdiyev d
PMCID: PMC3344539  PMID: 22590301

Abstract

In the title moleclue, C16H13ClN2O2, the cyclo­hexene ring is in a sofa conformation. The pyran ring is essentialy planar [maximum deviation = 0.038 (2) Å] and forms a dihedral angle of 89.68 (10)° with the benzene ring. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with R 2 2(12) ring motifs. These dimers are further linked by N—H⋯O hydrogen bonds into chains along [110]. Weak C—H⋯O hydrogen bonds are also present.

Related literature  

For pharmaceutical background to 2-amino-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbonitrile derivatives, see: Gao et al. (2001); Xu et al. (2011); Luan et al. (2011); Wang & Zhu, (2007); O’Callaghan et al. (1995). For similar structures, see: Tu et al. (2001); Qiao et al. (2011); Kong et al. (2011); Hu et al. (2012). For standard bond lengths, see: Allen et al. (1987). For geometric analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).graphic file with name e-68-o1414-scheme1.jpg

Experimental  

Crystal data  

  • C16H13ClN2O2

  • M r = 300.73

  • Monoclinic, Inline graphic

  • a = 13.753 (4) Å

  • b = 11.077 (3) Å

  • c = 19.370 (6) Å

  • β = 107.856 (5)°

  • V = 2808.7 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 K

  • 0.43 × 0.27 × 0.07 mm

Data collection  

  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.914, T max = 0.981

  • 10643 measured reflections

  • 2755 independent reflections

  • 2124 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.122

  • S = 1.02

  • 2755 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015838/lh5452sup1.cif

e-68-o1414-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015838/lh5452Isup2.hkl

e-68-o1414-Isup2.hkl (135.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015838/lh5452Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.88 2.25 3.132 (3) 177
N1—H1B⋯O1ii 0.88 2.15 2.955 (2) 151
C3—H3⋯N2iii 0.95 2.48 3.226 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors gratefully thank the Higher Education Ministries in both the Arab Republic of Egypt and the Republic of Azerbaijan for their financial support to conduct this project. They also extend their thanks to Manchester Metropolitan University for facilitating this study.

supplementary crystallographic information

Comment

The existence of an amino group and cyano group in tetrahydrochromenone compounds make them great substrates for building up multi organic transformations (Luan et al., 2011), preparing poly-functionalized substituted pyran derivatives (Wang & Zhu, 2007) and designing of poly-heterocyclic compounds (O'Callaghan et al.,1995). Moreover, such derivatives of tetrahydrochromenones have attracted strong interests of pharmacists and biologists because of their potential application in the treatment of psoriatic arthritis and rheumatoid arthritis (Xu et al., 2011). They also have wide biological applications such as anti-anaphylaxis, anti-achondroplasty and anti-cancer activity (Gao et al., 2001). To continue to our interest in the synthesis of biologically active compounds we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The (C8–C13) cyclohexene ring is in a sofa conformation with puckering parameters (Cremer & Pople, 1975) of QT = 0.466 (3) Å, θ = 58.3 (2) ° and φ = 173.5 (3) °. The pyran ring (O2/C7/C8/C13—C15) is essentialy planar with a maximum deviation of 0.038 (2) Å for C7, and forms a dihedral angle of 89.68 (10)° with the benzene ring (C1-C6). The bond lengths (Allen et al., 1987) and angles are similar to those for reported structures (Tu et al., 2001; Qiao et al., 2011; Kong et al., 2011; Hu et al., 2012).

In the crystal, molecules are linked by pairs of intermolecular N—H···N hydrogen bonds, forming inversion dimers with R22(12) ring motifs (Bernstein et al., 1995; Etter et al., 1990), and these dimers are connected by weak C—H···N and N—H···O hydrogen bonds, generating one-dimensional chains along [110] (Table 1, Fig. 2).

Experimental

The title compound (I) was formed during a three component reaction of an equimolar ratios of (4-chlorobenzylidene)propanedinitrile (1 mmol), (4-aminophenyl)methanol (1 mmol) and cyclohexane-1,3-dione (1 mmol). The reaction mixture was heated in ethanol at 351 K. The reaction was monitored with TLC until completed after 5 h, then left in fume cupboard at room temperature until solvent evaporated. The resulting solid mass was recrystallized from ethanol to afford good quality crystals suitable for X-ray diffraction. [Yield: 83%, m.p.: 513 K].

Refinement

All H atoms were positioned geometrically and refined using as riding model with N—H = 0.88 Å for NH2, C—H = 0.95 Å for aromatic, C—H = 0.99 Å for methylene and C—H = 1.00 Å for methine, and with Uiso(H) = 1.2Ueq(C,N)

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I), with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines. H atoms not involved in H-bonding are omitted for clarity. Symmetry codes: (b) -x+1, -y+1, -z+1; (c) x+1/2, y+1/2, z; (d) -x+1/2, -y+1/2, -z+1.

Crystal data

C16H13ClN2O2 F(000) = 1248
Mr = 300.73 Dx = 1.422 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 833 reflections
a = 13.753 (4) Å θ = 2.2–28.2°
b = 11.077 (3) Å µ = 0.28 mm1
c = 19.370 (6) Å T = 150 K
β = 107.856 (5)° Plate, colourless
V = 2808.7 (14) Å3 0.43 × 0.27 × 0.07 mm
Z = 8

Data collection

Bruker APEX 2000 CCD area-detector diffractometer 2755 independent reflections
Radiation source: fine-focus sealed tube 2124 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
phi and ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −16→16
Tmin = 0.914, Tmax = 0.981 k = −13→13
10643 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0649P)2] where P = (Fo2 + 2Fc2)/3
2755 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.12556 (5) 0.07141 (5) 0.22343 (4) 0.0510 (2)
O1 −0.04515 (11) 0.45923 (13) 0.41373 (8) 0.0395 (5)
O2 0.20240 (10) 0.74455 (12) 0.39806 (8) 0.0320 (4)
N1 0.37218 (13) 0.72339 (15) 0.44001 (9) 0.0347 (6)
N2 0.41870 (14) 0.40760 (17) 0.49094 (11) 0.0440 (7)
C1 0.13012 (15) 0.19541 (19) 0.28039 (12) 0.0337 (7)
C2 0.12955 (16) 0.17534 (19) 0.35014 (13) 0.0374 (7)
C3 0.13788 (15) 0.27229 (18) 0.39614 (12) 0.0332 (7)
C4 0.14684 (14) 0.38895 (17) 0.37333 (11) 0.0274 (6)
C5 0.14494 (16) 0.40667 (18) 0.30168 (11) 0.0348 (7)
C6 0.13673 (16) 0.3107 (2) 0.25501 (12) 0.0378 (7)
C7 0.16120 (14) 0.49363 (17) 0.42613 (11) 0.0270 (6)
C8 0.08175 (14) 0.59034 (17) 0.40049 (10) 0.0274 (6)
C9 −0.02395 (15) 0.55980 (18) 0.39594 (11) 0.0311 (7)
C10 −0.10332 (17) 0.6565 (2) 0.37309 (14) 0.0470 (8)
C11 −0.07795 (17) 0.7496 (2) 0.32396 (14) 0.0465 (8)
C12 0.02871 (15) 0.80147 (18) 0.35920 (12) 0.0360 (7)
C13 0.10411 (15) 0.70407 (18) 0.38660 (11) 0.0286 (6)
C14 0.28249 (15) 0.66677 (18) 0.42763 (10) 0.0285 (6)
C15 0.26669 (14) 0.54985 (17) 0.44117 (11) 0.0271 (6)
C16 0.35154 (15) 0.47326 (19) 0.46903 (11) 0.0304 (7)
H1A 0.42960 0.68370 0.45910 0.0420*
H1B 0.37370 0.80030 0.42910 0.0420*
H2 0.12350 0.09570 0.36650 0.0450*
H3 0.13750 0.25880 0.44450 0.0400*
H5 0.14940 0.48630 0.28470 0.0420*
H6 0.13560 0.32360 0.20630 0.0450*
H7 0.15570 0.46120 0.47300 0.0320*
H10A −0.11020 0.69730 0.41680 0.0560*
H10B −0.16990 0.61890 0.34740 0.0560*
H11A −0.12890 0.81560 0.31430 0.0560*
H11B −0.08110 0.71180 0.27700 0.0560*
H12A 0.04920 0.85040 0.32320 0.0430*
H12B 0.02750 0.85500 0.39980 0.0430*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0542 (4) 0.0358 (4) 0.0625 (4) 0.0042 (3) 0.0171 (3) −0.0181 (3)
O1 0.0357 (8) 0.0312 (9) 0.0545 (10) −0.0086 (7) 0.0182 (7) 0.0011 (7)
O2 0.0301 (8) 0.0212 (7) 0.0432 (8) −0.0032 (6) 0.0090 (6) 0.0040 (6)
N1 0.0288 (9) 0.0249 (9) 0.0471 (11) −0.0069 (7) 0.0070 (8) 0.0050 (8)
N2 0.0314 (10) 0.0353 (11) 0.0633 (13) −0.0011 (8) 0.0116 (9) 0.0139 (10)
C1 0.0238 (10) 0.0288 (12) 0.0460 (13) 0.0027 (9) 0.0071 (9) −0.0091 (10)
C2 0.0363 (12) 0.0224 (11) 0.0545 (14) −0.0011 (9) 0.0155 (10) 0.0015 (10)
C3 0.0345 (12) 0.0275 (11) 0.0383 (12) −0.0036 (9) 0.0120 (9) 0.0030 (9)
C4 0.0224 (10) 0.0224 (10) 0.0366 (11) −0.0036 (8) 0.0078 (8) 0.0000 (8)
C5 0.0405 (12) 0.0240 (11) 0.0390 (12) −0.0003 (9) 0.0111 (10) 0.0028 (9)
C6 0.0410 (12) 0.0350 (13) 0.0359 (12) 0.0044 (10) 0.0095 (10) −0.0001 (10)
C7 0.0279 (10) 0.0222 (10) 0.0309 (11) −0.0038 (8) 0.0091 (8) 0.0027 (8)
C8 0.0268 (10) 0.0234 (11) 0.0319 (11) −0.0009 (8) 0.0089 (8) −0.0005 (8)
C9 0.0303 (11) 0.0285 (12) 0.0344 (11) −0.0032 (9) 0.0099 (9) −0.0045 (9)
C10 0.0290 (12) 0.0374 (13) 0.0759 (18) 0.0014 (10) 0.0182 (11) 0.0005 (12)
C11 0.0323 (13) 0.0334 (13) 0.0691 (17) 0.0046 (10) 0.0085 (12) 0.0082 (12)
C12 0.0365 (12) 0.0261 (11) 0.0441 (13) 0.0016 (9) 0.0104 (10) 0.0042 (10)
C13 0.0282 (11) 0.0261 (11) 0.0316 (11) −0.0014 (9) 0.0095 (8) −0.0025 (9)
C14 0.0278 (11) 0.0277 (11) 0.0287 (11) −0.0018 (8) 0.0066 (8) −0.0004 (8)
C15 0.0256 (10) 0.0230 (10) 0.0311 (11) −0.0035 (8) 0.0064 (8) 0.0008 (8)
C16 0.0273 (11) 0.0262 (11) 0.0356 (12) −0.0077 (9) 0.0067 (9) 0.0032 (9)

Geometric parameters (Å, º)

Cl1—C1 1.751 (2) C8—C13 1.343 (3)
O1—C9 1.227 (3) C9—C10 1.496 (3)
O2—C13 1.376 (3) C10—C11 1.515 (3)
O2—C14 1.377 (3) C11—C12 1.528 (3)
N1—C14 1.338 (3) C12—C13 1.478 (3)
N2—C16 1.150 (3) C14—C15 1.352 (3)
N1—H1B 0.8800 C15—C16 1.410 (3)
N1—H1A 0.8800 C2—H2 0.9500
C1—C6 1.381 (3) C3—H3 0.9500
C1—C2 1.372 (3) C5—H5 0.9500
C2—C3 1.378 (3) C6—H6 0.9500
C3—C4 1.383 (3) C7—H7 1.0000
C4—C7 1.518 (3) C10—H10A 0.9900
C4—C5 1.394 (3) C10—H10B 0.9900
C5—C6 1.378 (3) C11—H11A 0.9900
C7—C8 1.502 (3) C11—H11B 0.9900
C7—C15 1.523 (3) C12—H12A 0.9900
C8—C9 1.469 (3) C12—H12B 0.9900
C13—O2—C14 118.95 (15) O2—C14—C15 121.62 (19)
H1A—N1—H1B 120.00 C7—C15—C14 123.71 (18)
C14—N1—H1A 120.00 C7—C15—C16 117.10 (17)
C14—N1—H1B 120.00 C14—C15—C16 119.17 (19)
Cl1—C1—C2 118.92 (16) N2—C16—C15 177.8 (2)
C2—C1—C6 121.4 (2) C1—C2—H2 120.00
Cl1—C1—C6 119.64 (17) C3—C2—H2 120.00
C1—C2—C3 119.1 (2) C2—C3—H3 119.00
C2—C3—C4 121.3 (2) C4—C3—H3 119.00
C3—C4—C7 120.28 (18) C4—C5—H5 119.00
C3—C4—C5 118.24 (18) C6—C5—H5 119.00
C5—C4—C7 121.46 (17) C1—C6—H6 121.00
C4—C5—C6 121.16 (19) C5—C6—H6 121.00
C1—C6—C5 118.8 (2) C4—C7—H7 108.00
C8—C7—C15 109.00 (16) C8—C7—H7 108.00
C4—C7—C8 113.00 (17) C15—C7—H7 108.00
C4—C7—C15 111.14 (16) C9—C10—H10A 109.00
C7—C8—C9 117.51 (17) C9—C10—H10B 109.00
C7—C8—C13 123.17 (19) C11—C10—H10A 109.00
C9—C8—C13 119.15 (18) C11—C10—H10B 109.00
O1—C9—C8 120.54 (19) H10A—C10—H10B 108.00
C8—C9—C10 118.15 (18) C10—C11—H11A 110.00
O1—C9—C10 121.2 (2) C10—C11—H11B 110.00
C9—C10—C11 112.7 (2) C12—C11—H11A 109.00
C10—C11—C12 110.5 (2) C12—C11—H11B 110.00
C11—C12—C13 110.97 (17) H11A—C11—H11B 108.00
O2—C13—C8 123.17 (18) C11—C12—H12A 109.00
O2—C13—C12 111.50 (17) C11—C12—H12B 109.00
C8—C13—C12 125.3 (2) C13—C12—H12A 109.00
N1—C14—C15 127.46 (19) C13—C12—H12B 109.00
O2—C14—N1 110.92 (17) H12A—C12—H12B 108.00
C13—O2—C14—N1 −175.33 (16) C4—C7—C8—C13 −117.7 (2)
C13—O2—C14—C15 4.4 (3) C15—C7—C8—C9 −168.89 (17)
C14—O2—C13—C8 −2.4 (3) C15—C7—C8—C13 6.4 (3)
C14—O2—C13—C12 176.27 (17) C8—C7—C15—C16 177.19 (17)
Cl1—C1—C2—C3 177.03 (18) C13—C8—C9—C10 2.3 (3)
Cl1—C1—C6—C5 −177.07 (18) C7—C8—C13—C12 178.03 (19)
C2—C1—C6—C5 1.3 (3) C9—C8—C13—O2 171.79 (18)
C6—C1—C2—C3 −1.4 (3) C7—C8—C13—O2 −3.5 (3)
C1—C2—C3—C4 −0.1 (3) C7—C8—C9—O1 1.2 (3)
C2—C3—C4—C7 −177.0 (2) C7—C8—C9—C10 177.81 (18)
C2—C3—C4—C5 1.4 (3) C13—C8—C9—O1 −174.36 (19)
C3—C4—C7—C15 112.8 (2) C9—C8—C13—C12 −6.7 (3)
C3—C4—C7—C8 −124.3 (2) O1—C9—C10—C11 −154.9 (2)
C3—C4—C5—C6 −1.5 (3) C8—C9—C10—C11 28.4 (3)
C5—C4—C7—C8 57.4 (3) C9—C10—C11—C12 −53.7 (3)
C5—C4—C7—C15 −65.5 (2) C10—C11—C12—C13 48.8 (2)
C7—C4—C5—C6 176.9 (2) C11—C12—C13—O2 161.65 (18)
C4—C5—C6—C1 0.1 (3) C11—C12—C13—C8 −19.7 (3)
C4—C7—C15—C14 120.7 (2) O2—C14—C15—C7 −0.6 (3)
C4—C7—C15—C16 −57.6 (2) O2—C14—C15—C16 177.71 (18)
C8—C7—C15—C14 −4.5 (3) N1—C14—C15—C7 179.11 (19)
C4—C7—C8—C9 67.0 (2) N1—C14—C15—C16 −2.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N2i 0.88 2.25 3.132 (3) 177
N1—H1B···O1ii 0.88 2.15 2.955 (2) 151
C3—H3···N2iii 0.95 2.48 3.226 (3) 135

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, y+1/2, z; (iii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5452).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Gao, Y., Tu, S.-J., Zhou, J.-F. & Shi, D.-Q. (2001). J. Org. Chem. 7, 535–537.
  9. Hu, X.-L., Wang, Z.-X., Wang, F.-M. & Han, G.-F. (2012). Acta Cryst. E68, o823. [DOI] [PMC free article] [PubMed]
  10. Kong, L., Ju, X., Qiao, Y., Zhang, J. & Gao, Z. (2011). Acta Cryst. E67, o3100. [DOI] [PMC free article] [PubMed]
  11. Luan, C.-J., Wang, J.-Q., Zhang, G.-H., Wang, W., Tang, S.-G. & Guo, C. (2011). J. Org. Chem. 31, 860–864.
  12. O’Callaghan, C. N., McMurry, T. B. H. & O’Brien, J. E. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 417–420.
  13. Qiao, Y., Kong, L., Chen, G., Li, S. & Gao, Z. (2011). Acta Cryst. E67, o3099. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358–o359.
  18. Wang, J. & Zhu, S.-L. (2007). Acta Cryst. E63, o4190.
  19. Xu, J.-C., Li, W.-M., Zheng, H., Lai, Y.-F. & Zhang, P.-F. (2011). Tetrahedron, 67, 9582–9587.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015838/lh5452sup1.cif

e-68-o1414-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015838/lh5452Isup2.hkl

e-68-o1414-Isup2.hkl (135.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015838/lh5452Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES