Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1416. doi: 10.1107/S160053681201598X

(R)-(3-Carb­oxy-2-hy­droxy­prop­yl)tri­methyl­aza­nium chloride

Seik Weng Ng a,*
PMCID: PMC3344540  PMID: 22590302

Abstract

In the title salt (common name l-carnitine hydro­chloride), C7H16NO3 +·Cl, the organic cation features a carb­oxy­lic part (–CO2H) having unambigous single- and double-bonds [1.336 (2), 1.211 (2) Å]. There is a large N—C—C bond angle [115.9 (1)°] for the C atom connected to the bulky trimethyl­amino substituent. In the crystal, the acid H atom forms a hydrogen bond to the chloride anion, whereas the hydroxyl H atom forms a longer hydrogen bond to the anion, generating a helical chain running along [001].

Related literature  

For racemic carnitine hydro­chloride, see: Tomita et al. (1974); Yunuskhodzhaev et al. (1991). For R-carnitine, see: Gandour et al. (1985).graphic file with name e-68-o1416-scheme1.jpg

Experimental  

Crystal data  

  • C7H16NO3 +·Cl

  • M r = 197.66

  • Orthorhombic, Inline graphic

  • a = 6.3043 (3) Å

  • b = 11.5256 (7) Å

  • c = 13.4905 (8) Å

  • V = 980.23 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Agilent Technologies SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan CrysAlis PRO (Agilent, 2012) T min = 0.869, T max = 0.931

  • 6682 measured reflections

  • 2251 independent reflections

  • 2191 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.072

  • S = 1.09

  • 2251 reflections

  • 117 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 926 Friedel pairs

  • Flack parameter: 0.01 (5)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201598X/xu5512sup1.cif

e-68-o1416-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201598X/xu5512Isup2.hkl

e-68-o1416-Isup2.hkl (110.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201598X/xu5512Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.85 (1) 2.18 (1) 3.022 (1) 176 (2)
O3—H3⋯Cl1i 0.83 (1) 2.51 (2) 3.209 (1) 142 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

I thank the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

supplementary crystallographic information

Comment

A model for the binding of L-carnitine to the carnitine acetyltransferase enzyme has been proposed on the basis of the crystal structure of L-carnitine (Gandour et al., 1985). L-Carnitine, a zwitterionic compound that is biosynthesized from lysine and methinonine, is the vitamin BT; it is also avaliable commerically as the hydrochloride salt. The crystal structure of racemic carnitine hydrochloride has been previously reported (Tomita et al., 1974; Yunuskhodzhaev et al., 1991). In the crystal structure of L-carnitine hydrochloride (Scheme I), the carboxyl –CO2 part carries the acid hydrogen (Fig. 1). This part has unambigous single- and double-bonds [1.336 (2), 1.211 (2) Å]. The three-atom CcarboxylC–Ctrimethylamino unit shows a large angle [115.9 (1) °] for the atom connected to the bulky trimethylamino substituent. The acid hydrogen forms a hydrogen bond to the chloride anion (Table 1). Oddly, the hydroxy group does not engage in any hydrogen bonding interactions.

Experimental

L-Carnithine hydrochloride as supplied by Sigma Chemical Company consists of colorless prismatic crystals, and was used without purification.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.98 to 1.00 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The hydroxy and acid H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C7H16NO3+.Cl- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C7H16NO3+·Cl F(000) = 424
Mr = 197.66 Dx = 1.339 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3837 reflections
a = 6.3043 (3) Å θ = 2.3–27.5°
b = 11.5256 (7) Å µ = 0.36 mm1
c = 13.4905 (8) Å T = 100 K
V = 980.23 (10) Å3 Prism, colorless
Z = 4 0.40 × 0.30 × 0.20 mm

Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector 2251 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2191 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.033
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.3°
ω scan h = −8→8
Absorption correction: multi-scan CrysAlis PRO (Agilent, 2012) k = −12→15
Tmin = 0.869, Tmax = 0.931 l = −16→17
6682 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.129P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
2251 reflections Δρmax = 0.28 e Å3
117 parameters Δρmin = −0.19 e Å3
2 restraints Absolute structure: Flack (1983), 926 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.16829 (6) −0.02923 (3) 1.11989 (3) 0.01599 (10)
O1 0.11377 (16) 0.20168 (9) 1.01683 (8) 0.0153 (2)
H1 0.123 (3) 0.1372 (11) 1.0468 (14) 0.032 (6)*
O2 0.09374 (17) 0.09692 (9) 0.87751 (9) 0.0164 (2)
O3 0.03544 (17) 0.23605 (10) 0.69856 (8) 0.0146 (2)
H3 0.066 (4) 0.1658 (10) 0.6948 (18) 0.047 (7)*
N1 0.38932 (18) 0.40990 (10) 0.62406 (10) 0.0107 (2)
C1 0.1083 (2) 0.19013 (12) 0.91830 (11) 0.0113 (3)
C2 0.1258 (2) 0.30406 (12) 0.86490 (11) 0.0120 (3)
H2A 0.2287 0.3542 0.9001 0.014*
H2B −0.0138 0.3435 0.8659 0.014*
C3 0.1976 (2) 0.28843 (12) 0.75711 (10) 0.0103 (3)
H3A 0.3279 0.2390 0.7552 0.012*
C4 0.2485 (2) 0.40787 (13) 0.71538 (11) 0.0109 (3)
H4A 0.1132 0.4470 0.6989 0.013*
H4B 0.3182 0.4540 0.7680 0.013*
C5 0.6024 (2) 0.35642 (13) 0.64467 (12) 0.0151 (3)
H5A 0.6887 0.3582 0.5843 0.023*
H5B 0.5834 0.2758 0.6661 0.023*
H5C 0.6741 0.4003 0.6971 0.023*
C6 0.2902 (3) 0.35091 (15) 0.53684 (11) 0.0198 (4)
H6A 0.3867 0.3552 0.4800 0.030*
H6B 0.1563 0.3895 0.5203 0.030*
H6C 0.2628 0.2694 0.5531 0.030*
C7 0.4241 (3) 0.53502 (13) 0.59814 (12) 0.0187 (3)
H7A 0.5126 0.5402 0.5386 0.028*
H7B 0.4954 0.5742 0.6533 0.028*
H7C 0.2871 0.5723 0.5856 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02265 (18) 0.01262 (16) 0.01271 (18) 0.00108 (14) 0.00145 (14) 0.00228 (14)
O1 0.0237 (6) 0.0118 (5) 0.0104 (5) 0.0005 (5) 0.0008 (4) 0.0021 (4)
O2 0.0218 (5) 0.0124 (5) 0.0150 (5) −0.0037 (4) −0.0005 (5) −0.0013 (4)
O3 0.0161 (5) 0.0142 (5) 0.0135 (6) −0.0021 (5) −0.0049 (4) −0.0009 (4)
N1 0.0103 (6) 0.0117 (5) 0.0102 (6) 0.0002 (5) 0.0010 (5) 0.0014 (5)
C1 0.0073 (6) 0.0149 (7) 0.0118 (7) 0.0007 (6) 0.0006 (5) 0.0008 (6)
C2 0.0126 (7) 0.0121 (6) 0.0112 (7) 0.0013 (6) 0.0002 (5) 0.0003 (5)
C3 0.0095 (6) 0.0109 (6) 0.0106 (7) 0.0008 (5) −0.0011 (5) 0.0004 (6)
C4 0.0114 (6) 0.0115 (6) 0.0099 (7) 0.0010 (6) 0.0024 (5) 0.0004 (6)
C5 0.0118 (7) 0.0180 (7) 0.0155 (8) 0.0044 (6) 0.0011 (6) 0.0008 (6)
C6 0.0210 (8) 0.0305 (9) 0.0081 (8) −0.0080 (7) −0.0022 (6) −0.0002 (6)
C7 0.0167 (7) 0.0134 (7) 0.0260 (9) −0.0003 (7) 0.0062 (6) 0.0078 (7)

Geometric parameters (Å, º)

O1—C1 1.3363 (18) C3—C4 1.521 (2)
O1—H1 0.848 (9) C3—H3A 1.0000
O2—C1 1.2105 (18) C4—H4A 0.9900
O3—C3 1.4262 (18) C4—H4B 0.9900
O3—H3 0.833 (9) C5—H5A 0.9800
N1—C6 1.4956 (19) C5—H5B 0.9800
N1—C7 1.5000 (19) C5—H5C 0.9800
N1—C5 1.5042 (18) C6—H6A 0.9800
N1—C4 1.5188 (18) C6—H6B 0.9800
C1—C2 1.5018 (19) C6—H6C 0.9800
C2—C3 1.534 (2) C7—H7A 0.9800
C2—H2A 0.9900 C7—H7B 0.9800
C2—H2B 0.9900 C7—H7C 0.9800
C1—O1—H1 112.9 (14) N1—C4—H4A 108.3
C3—O3—H3 106.3 (18) C3—C4—H4A 108.3
C6—N1—C7 108.35 (12) N1—C4—H4B 108.3
C6—N1—C5 109.41 (12) C3—C4—H4B 108.3
C7—N1—C5 107.84 (12) H4A—C4—H4B 107.4
C6—N1—C4 112.76 (11) N1—C5—H5A 109.5
C7—N1—C4 106.82 (11) N1—C5—H5B 109.5
C5—N1—C4 111.47 (11) H5A—C5—H5B 109.5
O2—C1—O1 122.86 (14) N1—C5—H5C 109.5
O2—C1—C2 124.29 (14) H5A—C5—H5C 109.5
O1—C1—C2 112.83 (12) H5B—C5—H5C 109.5
C1—C2—C3 111.95 (11) N1—C6—H6A 109.5
C1—C2—H2A 109.2 N1—C6—H6B 109.5
C3—C2—H2A 109.2 H6A—C6—H6B 109.5
C1—C2—H2B 109.2 N1—C6—H6C 109.5
C3—C2—H2B 109.2 H6A—C6—H6C 109.5
H2A—C2—H2B 107.9 H6B—C6—H6C 109.5
O3—C3—C4 109.21 (11) N1—C7—H7A 109.5
O3—C3—C2 111.29 (11) N1—C7—H7B 109.5
C4—C3—C2 107.87 (11) H7A—C7—H7B 109.5
O3—C3—H3A 109.5 N1—C7—H7C 109.5
C4—C3—H3A 109.5 H7A—C7—H7C 109.5
C2—C3—H3A 109.5 H7B—C7—H7C 109.5
N1—C4—C3 115.93 (12)
O2—C1—C2—C3 −19.23 (19) C7—N1—C4—C3 −178.16 (13)
O1—C1—C2—C3 159.77 (12) C5—N1—C4—C3 −60.59 (16)
C1—C2—C3—O3 70.19 (14) O3—C3—C4—N1 −78.63 (15)
C1—C2—C3—C4 −170.02 (12) C2—C3—C4—N1 160.28 (11)
C6—N1—C4—C3 62.93 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···Cl1 0.85 (1) 2.18 (1) 3.022 (1) 176 (2)
O3—H3···Cl1i 0.83 (1) 2.51 (2) 3.209 (1) 142 (2)

Symmetry code: (i) −x+1/2, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5512).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Gandour, R. D., Colucci, W. J. & Fronczek, F. R. (1985). Bioorg. Chem. 13, 197–208.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tomita, K.-I., Urabe, K., Kim, Y. B. & Fujiwara, T. (1974). Bull. Chem. Soc. Jpn, 47, 1988–1993.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  8. Yunuskhodzhaev, A. N., Shamuratov, E. B., Batsanov, A. S. & Talipov, S. A. (1991). Chem. Nat. Compd. (Engl. Transl.), 27, 743–744.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201598X/xu5512sup1.cif

e-68-o1416-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201598X/xu5512Isup2.hkl

e-68-o1416-Isup2.hkl (110.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201598X/xu5512Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES