Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1421–o1422. doi: 10.1107/S1600536812015401

N′-[(E)-4-Benz­yloxy-2-hy­droxy­benzyl­idene]-4-nitro­benzohydrazide monohydrate

Bibitha Joseph a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC3344544  PMID: 22590306

Abstract

The title compound, C21H17N3O5·H2O, exists in the keto form with an E conformation with respect to the azomethine double bond. The twist angles between the aromatic rings are in the range 4.67 (10)–17.54 (10)°. A water mol­ecule of solvation is present in the lattice. A conventional intra­molecular O—H⋯N hydrogen bond increases the rigidity of the mol­ecule. Inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding inter­actions establish a supra­molecular linkage among the mol­ecules in the crystal structure. There are also C—H⋯π inter­actions present.

Related literature  

For the biological and other applications of carbohydrazides, see: Lakshmi et al. (2011); Grande et al. (2007); Naseema et al. (2010). For the synthesis, see: Emmanuel et al. (2011). For related structures of carbohydrazides, see: Fun et al. (2008). For the keto form, see: Bakir & Brown (2002). graphic file with name e-68-o1421-scheme1.jpg

Experimental  

Crystal data  

  • C21H17N3O5·H2O

  • M r = 409.39

  • Monoclinic, Inline graphic

  • a = 4.6275 (7) Å

  • b = 6.5332 (11) Å

  • c = 31.856 (5) Å

  • β = 92.417 (4)°

  • V = 962.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.969, T max = 0.974

  • 7388 measured reflections

  • 1713 independent reflections

  • 1663 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.088

  • S = 1.05

  • 1713 reflections

  • 288 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015401/fj2537sup1.cif

e-68-o1421-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015401/fj2537Isup2.hkl

e-68-o1421-Isup2.hkl (84.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015401/fj2537Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1Si 0.86 (2) 2.57 (4) 3.058 (3) 117 (4)
O4—H4O⋯N3 0.86 (2) 1.93 (3) 2.670 (2) 143 (4)
N2—H2N⋯O1S 0.86 (2) 2.01 (2) 2.855 (3) 166 (3)
O1S—H2S⋯O4ii 0.87 (2) 2.01 (2) 2.860 (3) 165 (4)
O1S—H1S⋯O3iii 0.88 (2) 1.80 (2) 2.676 (3) 175 (5)
C14—H14⋯O1S 0.93 2.37 3.184 (2) 146
C21—H21⋯O1S 0.93 2.43 3.325 (3) 161
C7—H7BCgiv 0.97 2.69 3.472 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

BJ is grateful to the Council for Scientific and Industrial Research, New Delhi, India, for the award of a Senior Research Fellowship. The authors also thank the Sophisticated Analytical Instument Facility, Cochin University of Science & Technology, Kochi-22, for providing the single-crystal X-ray diffraction data.

supplementary crystallographic information

Comment

There is growing interest in the structural features of carbohydrazides as they show a wide range of biological activities, with potential uses in antibacterial, antifungal and anticancer studies (Lakshmi et al., 2011; Grande et al., 2007). Hydrazones and their metal complexes have found applications in chemical processes like non linear optics, sensors etc. (Naseema et al., 2010).

The title compound N'-{(E)-[4-(benzyloxy)-2-hydroxyphenyl]methylidene}-4-nitrobenzohydrazide hydrate is found to exist in the E configuration with respect to N3=C14 bond. A perspective view of the molecular structure of the title compound, along with the atom-labeling is shown in Fig. 1. The bond length of C15=O3 [1.229 (2) Å] shows a significant double-bond character (Fun et al.., 2008) indicating that the molecule exists in the keto form in the solid state (Bakir & Brown, 2002) and the dihedral angles between the aromatic rings are in the range of 4.67 (10) -17.54 (10)°.

The lattice water molecule plays an essential role in packing of the molecules forming conventional and non-conventional hydrogen bonds between the carbohydrazide and water molecules (Fig. 2). A C–H···π interaction is also observed in the crystal structure between one of the H atoms attached to the C7 carbon atom and the phenyl ring of the adjacent molecule in the crystal system (Fig. 3). Two types of very weak π–π interactions also present with a shortest centroid-centroid distance of 4.9302 (14) Å. In crystal packing, the parallel arrangement of the molecules along a axis is shown in Fig. 4.

Experimental

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011) by refluxing a mixture of methanolic solutions of 4-nitrobenzohydrazide (0.181 g, 1 mmol) and 4-(benzyloxy)-2-hydroxybenzaldehyde (0.228 g, 1 mmol) for 4 h. The formed crystals were collected, washed with few drops of methanol and dried over P4O10in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.

Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2 Ueq. N2—H2N and O4—H4O (0.86 Å) H atoms were located from difference maps and restrained using DFIX instructions. The O1S—H1S and O1S—H2S (0.86 Å) H atoms of the water molecule is also located from difference maps and restrained using DFIX and DANG instructions.

In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the molecular structure of the title compound, along with the atom-labelling, drawn with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A view of the conventional and non-conventional hydrogen bonding interactions

Fig. 3.

Fig. 3.

Graphical representation showing C–H···π interaction in the crystal structure of C21H17N3O5.H2O.

Fig. 4.

Fig. 4.

Packing arrangement of molecules along a axis.

Crystal data

C21H17N3O5·H2O F(000) = 428.0
Mr = 409.39 Dx = 1.413 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 4698 reflections
a = 4.6275 (7) Å θ = 3.1–28.2°
b = 6.5332 (11) Å µ = 0.11 mm1
c = 31.856 (5) Å T = 296 K
β = 92.417 (4)° Block, yellow
V = 962.2 (3) Å3 0.30 × 0.28 × 0.25 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 1713 independent reflections
Radiation source: fine-focus sealed tube 1663 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω and φ scan θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −3→5
Tmin = 0.969, Tmax = 0.974 k = −7→7
7388 measured reflections l = −37→37

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.0484P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.011
1713 reflections Δρmax = 0.14 e Å3
288 parameters Δρmin = −0.16 e Å3
7 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.021 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.5580 (7) 0.1667 (5) 0.47190 (9) 0.0986 (10)
O2 −0.5671 (7) 0.4470 (5) 0.50699 (9) 0.0960 (9)
O3 0.3371 (5) 0.9071 (3) 0.37071 (7) 0.0673 (6)
O4 0.8452 (4) 1.0067 (3) 0.26751 (6) 0.0537 (5)
O5 1.4446 (4) 0.8132 (2) 0.15654 (5) 0.0428 (4)
O1S 0.3303 (5) 0.1942 (3) 0.31076 (7) 0.0596 (5)
N1 −0.4868 (6) 0.3450 (5) 0.47795 (8) 0.0623 (7)
N2 0.3751 (4) 0.6173 (3) 0.33257 (6) 0.0380 (4)
N3 0.5600 (4) 0.7064 (3) 0.30472 (6) 0.0370 (4)
C1 1.8112 (6) 0.8824 (4) 0.09200 (9) 0.0507 (6)
H1 1.7528 0.7502 0.0983 0.061*
C2 2.0020 (6) 0.9151 (5) 0.05996 (9) 0.0593 (8)
H2 2.0703 0.8044 0.0449 0.071*
C3 2.0894 (6) 1.1089 (5) 0.05048 (9) 0.0589 (8)
H3 2.2186 1.1292 0.0293 0.071*
C4 1.9873 (6) 1.2742 (5) 0.07214 (9) 0.0600 (7)
H4 2.0454 1.4061 0.0654 0.072*
C5 1.7976 (6) 1.2430 (4) 0.10394 (9) 0.0508 (6)
H5 1.7282 1.3546 0.1186 0.061*
C6 1.7094 (4) 1.0458 (4) 0.11423 (7) 0.0377 (5)
C7 1.5050 (5) 1.0238 (4) 0.14926 (7) 0.0391 (5)
H7A 1.5901 1.0846 0.1747 0.047*
H7B 1.3264 1.0957 0.1421 0.047*
C8 1.2534 (4) 0.7701 (4) 0.18637 (7) 0.0355 (5)
C9 1.1417 (5) 0.9148 (3) 0.21297 (7) 0.0371 (5)
H9 1.1963 1.0513 0.2108 0.044*
C10 0.9484 (4) 0.8566 (4) 0.24291 (7) 0.0345 (5)
C11 0.8636 (4) 0.6529 (4) 0.24699 (7) 0.0346 (5)
C12 0.9782 (5) 0.5107 (4) 0.21932 (8) 0.0430 (5)
H12 0.9233 0.3742 0.2212 0.052*
C13 1.1688 (5) 0.5665 (4) 0.18961 (8) 0.0434 (5)
H13 1.2415 0.4686 0.1717 0.052*
C14 0.6665 (5) 0.5843 (4) 0.27812 (7) 0.0388 (5)
H14 0.6156 0.4467 0.2788 0.047*
C15 0.2747 (5) 0.7263 (4) 0.36431 (8) 0.0405 (5)
C16 0.0762 (5) 0.6172 (4) 0.39327 (7) 0.0382 (5)
C17 −0.0090 (6) 0.7250 (4) 0.42798 (8) 0.0522 (6)
H17 0.0583 0.8576 0.4326 0.063*
C18 −0.1943 (6) 0.6370 (5) 0.45600 (8) 0.0567 (7)
H18 −0.2526 0.7092 0.4793 0.068*
C19 −0.2898 (5) 0.4403 (4) 0.44837 (7) 0.0452 (6)
C20 −0.2096 (6) 0.3294 (4) 0.41418 (9) 0.0524 (6)
H20 −0.2769 0.1967 0.4098 0.063*
C21 −0.0266 (6) 0.4198 (4) 0.38649 (8) 0.0494 (6)
H21 0.0285 0.3474 0.3630 0.059*
H1S 0.325 (10) 0.105 (6) 0.3313 (11) 0.096 (14)*
H2S 0.169 (6) 0.160 (6) 0.2975 (12) 0.099 (14)*
H2N 0.336 (6) 0.489 (3) 0.3287 (9) 0.046 (7)*
H4O 0.730 (7) 0.958 (7) 0.2853 (11) 0.090 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.123 (2) 0.097 (2) 0.0791 (17) −0.0492 (18) 0.0467 (15) −0.0001 (15)
O2 0.1081 (19) 0.108 (2) 0.0771 (16) −0.0053 (17) 0.0631 (14) −0.0006 (15)
O3 0.1030 (17) 0.0439 (11) 0.0571 (11) −0.0205 (10) 0.0283 (10) −0.0053 (9)
O4 0.0609 (11) 0.0409 (10) 0.0623 (11) −0.0109 (8) 0.0384 (9) −0.0097 (8)
O5 0.0446 (8) 0.0385 (9) 0.0470 (9) 0.0009 (8) 0.0217 (7) 0.0040 (7)
O1S 0.0790 (14) 0.0383 (9) 0.0638 (12) −0.0155 (9) 0.0283 (10) −0.0050 (9)
N1 0.0571 (14) 0.0820 (19) 0.0491 (12) −0.0043 (13) 0.0172 (11) 0.0143 (13)
N2 0.0434 (10) 0.0318 (10) 0.0400 (10) −0.0066 (8) 0.0150 (8) 0.0050 (8)
N3 0.0357 (10) 0.0364 (10) 0.0398 (10) −0.0075 (8) 0.0127 (7) 0.0060 (8)
C1 0.0523 (14) 0.0453 (14) 0.0560 (15) −0.0009 (12) 0.0202 (12) 0.0008 (11)
C2 0.0609 (17) 0.065 (2) 0.0547 (15) 0.0085 (14) 0.0296 (13) −0.0029 (13)
C3 0.0500 (14) 0.081 (2) 0.0477 (14) 0.0040 (14) 0.0227 (11) 0.0143 (15)
C4 0.0598 (16) 0.0594 (17) 0.0624 (17) −0.0058 (14) 0.0212 (13) 0.0237 (15)
C5 0.0517 (14) 0.0444 (14) 0.0579 (14) 0.0025 (11) 0.0195 (11) 0.0093 (12)
C6 0.0303 (10) 0.0455 (12) 0.0378 (11) 0.0008 (10) 0.0089 (9) 0.0078 (10)
C7 0.0378 (11) 0.0382 (12) 0.0420 (12) 0.0016 (10) 0.0118 (9) 0.0024 (10)
C8 0.0334 (11) 0.0391 (12) 0.0346 (10) 0.0020 (9) 0.0097 (8) 0.0037 (9)
C9 0.0390 (11) 0.0304 (11) 0.0426 (12) −0.0034 (9) 0.0106 (9) 0.0016 (9)
C10 0.0353 (11) 0.0327 (12) 0.0362 (11) −0.0026 (9) 0.0100 (8) −0.0011 (9)
C11 0.0312 (10) 0.0356 (12) 0.0374 (11) −0.0039 (9) 0.0066 (9) 0.0019 (9)
C12 0.0457 (12) 0.0300 (11) 0.0542 (14) −0.0021 (10) 0.0139 (10) 0.0002 (10)
C13 0.0454 (12) 0.0365 (12) 0.0497 (12) 0.0018 (10) 0.0174 (10) −0.0052 (10)
C14 0.0382 (11) 0.0338 (12) 0.0452 (12) −0.0049 (9) 0.0102 (10) 0.0073 (9)
C15 0.0459 (12) 0.0373 (12) 0.0389 (11) −0.0050 (10) 0.0095 (9) 0.0028 (10)
C16 0.0393 (11) 0.0419 (12) 0.0341 (11) 0.0032 (10) 0.0082 (9) 0.0054 (9)
C17 0.0611 (16) 0.0511 (15) 0.0455 (13) −0.0088 (13) 0.0140 (11) −0.0051 (12)
C18 0.0648 (16) 0.0659 (17) 0.0409 (13) −0.0006 (14) 0.0201 (11) −0.0074 (13)
C19 0.0388 (12) 0.0614 (17) 0.0362 (12) 0.0002 (11) 0.0100 (9) 0.0102 (11)
C20 0.0569 (15) 0.0443 (14) 0.0575 (15) −0.0059 (12) 0.0198 (12) 0.0053 (12)
C21 0.0580 (15) 0.0452 (14) 0.0468 (13) −0.0061 (12) 0.0232 (11) −0.0028 (11)

Geometric parameters (Å, º)

O1—N1 1.224 (4) C6—C7 1.500 (3)
O2—N1 1.211 (4) C7—H7A 0.9700
O3—C15 1.231 (3) C7—H7B 0.9700
O4—C10 1.355 (3) C8—C9 1.384 (3)
O4—H4O 0.86 (2) C8—C13 1.392 (4)
O5—C8 1.355 (3) C9—C10 1.388 (3)
O5—C7 1.425 (3) C9—H9 0.9300
O1S—H1S 0.88 (2) C10—C11 1.395 (3)
O1S—H2S 0.873 (19) C11—C12 1.400 (3)
N1—C19 1.476 (3) C11—C14 1.446 (3)
N2—C15 1.336 (3) C12—C13 1.370 (3)
N2—N3 1.386 (3) C12—H12 0.9300
N2—H2N 0.863 (19) C13—H13 0.9300
N3—C14 1.277 (3) C14—H14 0.9300
C1—C6 1.375 (4) C15—C16 1.508 (3)
C1—C2 1.394 (4) C16—C17 1.383 (4)
C1—H1 0.9300 C16—C21 1.388 (4)
C2—C3 1.367 (5) C17—C18 1.388 (4)
C2—H2 0.9300 C17—H17 0.9300
C3—C4 1.376 (5) C18—C19 1.377 (4)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.383 (4) C19—C20 1.372 (4)
C4—H4 0.9300 C20—C21 1.381 (4)
C5—C6 1.394 (3) C20—H20 0.9300
C5—H5 0.9300 C21—H21 0.9300
C10—O4—H4O 111 (3) C8—C9—H9 119.9
C8—O5—C7 116.93 (17) C10—C9—H9 119.9
H1S—O1S—H2S 98 (3) O4—C10—C9 116.9 (2)
O2—N1—O1 123.7 (3) O4—C10—C11 122.0 (2)
O2—N1—C19 118.2 (3) C9—C10—C11 121.2 (2)
O1—N1—C19 118.0 (3) C10—C11—C12 117.30 (19)
C15—N2—N3 120.28 (19) C10—C11—C14 123.2 (2)
C15—N2—H2N 123 (2) C12—C11—C14 119.5 (2)
N3—N2—H2N 117 (2) C13—C12—C11 122.0 (2)
C14—N3—N2 115.35 (19) C13—C12—H12 119.0
C6—C1—C2 120.0 (3) C11—C12—H12 119.0
C6—C1—H1 120.0 C12—C13—C8 119.8 (2)
C2—C1—H1 120.0 C12—C13—H13 120.1
C3—C2—C1 120.4 (3) C8—C13—H13 120.1
C3—C2—H2 119.8 N3—C14—C11 122.3 (2)
C1—C2—H2 119.8 N3—C14—H14 118.9
C2—C3—C4 120.3 (2) C11—C14—H14 118.9
C2—C3—H3 119.8 O3—C15—N2 123.4 (2)
C4—C3—H3 119.8 O3—C15—C16 119.8 (2)
C3—C4—C5 119.6 (3) N2—C15—C16 116.8 (2)
C3—C4—H4 120.2 C17—C16—C21 119.4 (2)
C5—C4—H4 120.2 C17—C16—C15 116.8 (2)
C4—C5—C6 120.6 (3) C21—C16—C15 123.9 (2)
C4—C5—H5 119.7 C16—C17—C18 120.5 (3)
C6—C5—H5 119.7 C16—C17—H17 119.7
C1—C6—C5 119.1 (2) C18—C17—H17 119.7
C1—C6—C7 123.3 (2) C19—C18—C17 118.4 (2)
C5—C6—C7 117.6 (2) C19—C18—H18 120.8
O5—C7—C6 110.37 (19) C17—C18—H18 120.8
O5—C7—H7A 109.6 C20—C19—C18 122.5 (2)
C6—C7—H7A 109.6 C20—C19—N1 118.6 (2)
O5—C7—H7B 109.6 C18—C19—N1 118.9 (2)
C6—C7—H7B 109.6 C19—C20—C21 118.4 (2)
H7A—C7—H7B 108.1 C19—C20—H20 120.8
O5—C8—C9 124.0 (2) C21—C20—H20 120.8
O5—C8—C13 116.4 (2) C20—C21—C16 120.9 (2)
C9—C8—C13 119.6 (2) C20—C21—H21 119.6
C8—C9—C10 120.1 (2) C16—C21—H21 119.6
C15—N2—N3—C14 173.2 (2) O5—C8—C13—C12 179.4 (2)
C6—C1—C2—C3 0.1 (5) C9—C8—C13—C12 −0.6 (4)
C1—C2—C3—C4 −0.8 (5) N2—N3—C14—C11 −179.85 (19)
C2—C3—C4—C5 0.7 (5) C10—C11—C14—N3 −1.3 (3)
C3—C4—C5—C6 0.1 (4) C12—C11—C14—N3 178.5 (2)
C2—C1—C6—C5 0.6 (4) N3—N2—C15—O3 0.1 (4)
C2—C1—C6—C7 −179.7 (3) N3—N2—C15—C16 −179.66 (19)
C4—C5—C6—C1 −0.7 (4) O3—C15—C16—C17 −4.8 (4)
C4—C5—C6—C7 179.6 (2) N2—C15—C16—C17 175.0 (2)
C8—O5—C7—C6 −177.51 (18) O3—C15—C16—C21 174.1 (3)
C1—C6—C7—O5 2.1 (3) N2—C15—C16—C21 −6.2 (3)
C5—C6—C7—O5 −178.1 (2) C21—C16—C17—C18 0.3 (4)
C7—O5—C8—C9 −7.7 (3) C15—C16—C17—C18 179.2 (2)
C7—O5—C8—C13 172.3 (2) C16—C17—C18—C19 0.2 (4)
O5—C8—C9—C10 −179.4 (2) C17—C18—C19—C20 −0.3 (4)
C13—C8—C9—C10 0.5 (3) C17—C18—C19—N1 180.0 (2)
C8—C9—C10—O4 −179.2 (2) O2—N1—C19—C20 −176.7 (3)
C8—C9—C10—C11 0.2 (3) O1—N1—C19—C20 3.9 (4)
O4—C10—C11—C12 178.5 (2) O2—N1—C19—C18 3.0 (4)
C9—C10—C11—C12 −0.9 (3) O1—N1—C19—C18 −176.4 (3)
O4—C10—C11—C14 −1.6 (3) C18—C19—C20—C21 −0.1 (4)
C9—C10—C11—C14 179.0 (2) N1—C19—C20—C21 179.6 (2)
C10—C11—C12—C13 0.8 (3) C19—C20—C21—C16 0.6 (4)
C14—C11—C12—C13 −179.1 (2) C17—C16—C21—C20 −0.7 (4)
C11—C12—C13—C8 −0.1 (4) C15—C16—C21—C20 −179.6 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring

D—H···A D—H H···A D···A D—H···A
O4—H4O···O1Si 0.86 (2) 2.57 (4) 3.058 (3) 117 (4)
O4—H4O···N3 0.86 (2) 1.93 (3) 2.670 (2) 143 (4)
N2—H2N···O1S 0.86 (2) 2.01 (2) 2.855 (3) 166 (3)
O1S—H2S···O4ii 0.87 (2) 2.01 (2) 2.860 (3) 165 (4)
O1S—H1S···O3iii 0.88 (2) 1.80 (2) 2.676 (3) 175 (5)
C14—H14···O1S 0.93 2.37 3.184 (2) 146
C21—H21···O1S 0.93 2.43 3.325 (3) 161
C7—H7B···Cgiv 0.97 2.69 3.472 (2) 138

Symmetry codes: (i) x, y+1, z; (ii) x−1, y−1, z; (iii) x, y−1, z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2537).

References

  1. Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129-136.
  2. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [DOI] [PMC free article] [PubMed]
  7. Grande, F., Aiello, F., Grazia, O. D., Brizzi, A., Garofalo, A. & Neamati, N. (2007). Bioorg. Med. Chem. 15, 288–294. [DOI] [PubMed]
  8. Lakshmi, B., Avaji, P. G., Shivananda, K. N., Nagella, P., Manohar, S. H. & Mahendra, K. N. (2011). Polyhedron, 30, 1507–1515.
  9. Naseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741–748.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015401/fj2537sup1.cif

e-68-o1421-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015401/fj2537Isup2.hkl

e-68-o1421-Isup2.hkl (84.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015401/fj2537Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES