Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1423–o1424. doi: 10.1107/S1600536812015814

9,10-Dioxoanthracene-1,4-diyl bis­(4-methyl­benzene­sulfonate)

Thapong Teerawatananond a, Chiaranan Kerdsamut b, Sirirat Kokpol c, Nongnuj Muangsin d,*
PMCID: PMC3344545  PMID: 22590307

Abstract

The title mol­ecule, C28H20O8S2, has a T-shaped conformation. The central 9,10-anthraquinone moiety is bow-shaped with the two outer aromatic rings being inclined to one another by 13.99 (11)°. The benzenesulfonate rings are inclined to one another by 47.35 (12)°, and by 34.51 (11) and 17.88 (11)° to the bridging aromatic ring of the 9,10-anthraquinone moiety. In the crystal, C—H⋯O interactions link the mol­ecules into ribbons in [100].

Related literature  

For background to the structures of anthraquinones and their biological activity, see: Zielske (1987); Yatsenko et al. (2000); Huang et al. (2004); Meng et al. (2005); García-Sosa et al. (2006); Cho et al. (2006); Carland et al. (2010). For related structures, see: Swaminathan & Nigam (1967); Cao et al. (2007).graphic file with name e-68-o1423-scheme1.jpg

Experimental  

Crystal data  

  • C28H20O8S2

  • M r = 548.56

  • Triclinic, Inline graphic

  • a = 9.6796 (2) Å

  • b = 10.9426 (3) Å

  • c = 13.1833 (4) Å

  • α = 111.122 (1)°

  • β = 90.961 (1)°

  • γ = 107.190 (1)°

  • V = 1232.41 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.35 × 0.20 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.912, T max = 0.948

  • 12983 measured reflections

  • 5616 independent reflections

  • 3997 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.127

  • S = 1.02

  • 5616 reflections

  • 343 parameters

  • 346 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015814/cv5268sup1.cif

e-68-o1423-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015814/cv5268Isup2.hkl

e-68-o1423-Isup2.hkl (269.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015814/cv5268Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.48 3.333 (3) 153
C3—H3⋯O8ii 0.93 2.49 3.245 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Organizing Commitee for a bursary to attend the XXII IUCr 2011 Congress, the American Crystallographic Association (ACA) for a scholarship to attend the 2009 ACA Summer Course in Small Mol­ecule Crystallography, the 90th Anniversary of Chulalongkorn University Fund (Ratchada­phisek Somphot Endowment Fund), the Thai Government Stimulus Package 2 (TKK2555) project, the Center for Petroleum Petrochemicals and Advanced Materials, and the Research Centre for Bioorganic Chemistry (RCBC), Chulalongkorn University, for financial support.

supplementary crystallographic information

Comment

Anthraquinone and its derivatives have been studies in the many fields, for example, antimicrobial and antibiotic activity (García-Sosa et al., 2006), anticancer agents (Huang, et al., 2004; Carland et al., 2010). Additionally, both of unsubstituted and substituted anthraquinone play an important role in various photochemical and colorimetric sensor systems (Cho et al., 2006). The natural extracts or synthetic anthraquinones have been used in the field of dyes and pigments (Meng et al., 2005; Yatsenko et al., 2000; Cao et al., 2007).

1,4-Bis(hydroxy)anthraquinone is one of an important anthraquinone starting materials for preparation the various anthraquinone dyes and pigments (Zielske, 1987). In this work, we report the intermediate of an anthraquinone dye with the two symmetric tosylate substituents.

The molecular structure of 1,4-bis(tosyloxy)anthraquinone consisting of the two tosylate groups substituted at 1,4-positions of anthraquinone core, has a dragonfly-like conformation with the stranded 9,10-anthraquinone fragment. The anthraquinone plane is distorted by 0.1814 Å from the mean plane defined by 16 atoms becuase of the steric effect of two substitued tosyl groups. The O1 and O2 atoms were deviatated from the anthraquinone mean plane with the distances of -0.2736 (16) Å and -0.1467 (15) Å, respectively, which are respectively in the normal range for the distortion of oxyquinone reported for 1,4-bis(hydroxy)anthraquinone (Swaminathan et al., 1967). Additionally, the moderate intermolecular hydrogen bonds of sp2C—H···O have been investigated between the hydrogen atom bound the aromatic carbon inside quinone ring, and the oxygen atom at the sulfonate group in the p-toluenesulfonate moiety as Figure 2. The distance of C(7)—H(7)···O(4) is 3.333 (3) Å and C(3)—H(3)···O(8) is 3.245 (3) Å that showed in the Table 1. In the crystal structure, non-classical intermolecular C—H···O hydrogen bonds link molecules into ribbons in [100].

Experimental

1,4-Bis(tosyloxy)anthraquinone was prepared by a stirred solution of 1,4-bis(hydroxyl)anthraquinone or quinizarin (0.241 g, 1.00 mmol) in 25 mL of dry dichloromethane was added triethylamine (0.205 g, 2.03 mmol) and p-toluenesulfonyl chloride (0.383 g, 2.01 mmol). The solution was stirred at room temperature for 24 hours. The precipitate was filtered off and then washed with water and dried over magnesium sulfate. Filtration of slurry gave a bright yellow-green solid. The final product was recrystallized in hexane:dichloromethane using slow evaporation which was suitable for X-ray diffraction analysis. Additionally, 1H of 1,4-bis(tosyloxy)anthraquinone were recorded in CDCl3 solution on a Varian Mercury Plus 400 spectrometer. 1H NMR spectrum (δ, ppm): 7.94-8.02 (2H,m); 7.69-7.91 (6H,m); 7.45 (2H,s); 7.24-7.33 (4H,m); 2.35 (6H,s) (Zielske et al., 1987).

Refinement

All H-atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and Uiso(H) = 1.2–1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C28H20O8S2 Z = 2
Mr = 548.56 F(000) = 568
Triclinic, P1 Dx = 1.478 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6796 (2) Å Cell parameters from 3943 reflections
b = 10.9426 (3) Å θ = 2.6–27.1°
c = 13.1833 (4) Å µ = 0.27 mm1
α = 111.122 (1)° T = 296 K
β = 90.961 (1)° Block, yellow–orange
γ = 107.190 (1)° 0.35 × 0.20 × 0.20 mm
V = 1232.41 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 5616 independent reflections
Radiation source: fine-focus sealed tube 3997 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→12
Tmin = 0.912, Tmax = 0.948 k = −14→14
12983 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.3809P] where P = (Fo2 + 2Fc2)/3
5616 reflections (Δ/σ)max < 0.001
343 parameters Δρmax = 0.28 e Å3
346 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0724 (2) −0.3607 (2) 0.30321 (17) 0.0455 (5)
C2 0.2026 (2) −0.2898 (2) 0.37289 (19) 0.0540 (5)
H2 0.2612 −0.3377 0.3859 0.065*
C3 0.2451 (2) −0.1479 (2) 0.42300 (19) 0.0526 (5)
H3 0.3337 −0.0992 0.4688 0.063*
C4 0.1559 (2) −0.07826 (19) 0.40504 (16) 0.0410 (4)
C4A 0.0214 (2) −0.14744 (19) 0.33781 (15) 0.0381 (4)
C5 −0.3343 (2) −0.0885 (3) 0.2748 (2) 0.0572 (6)
H5 −0.3097 0.0060 0.3157 0.069*
C5A −0.2305 (2) −0.1552 (2) 0.26945 (16) 0.0441 (4)
C6 −0.4726 (3) −0.1623 (3) 0.2197 (2) 0.0700 (7)
H6 −0.5425 −0.1183 0.2251 0.084*
C7 −0.5085 (3) −0.3014 (3) 0.1565 (2) 0.0713 (7)
H7 −0.6016 −0.3501 0.1173 0.086*
C8 −0.4074 (3) −0.3691 (3) 0.1510 (2) 0.0616 (6)
H8 −0.4325 −0.4632 0.1084 0.074*
C8A −0.2675 (2) −0.2962 (2) 0.20916 (17) 0.0457 (5)
C9 −0.1623 (2) −0.3716 (2) 0.20721 (17) 0.0465 (5)
C9A −0.0210 (2) −0.29290 (19) 0.28346 (16) 0.0404 (4)
C10 −0.0799 (2) −0.0713 (2) 0.32586 (16) 0.0426 (4)
C11 −0.0130 (2) −0.7359 (2) 0.09847 (17) 0.0465 (5)
C12 −0.0189 (3) −0.8400 (2) 0.13582 (17) 0.0508 (5)
H12 0.0487 −0.8251 0.1935 0.061*
C13 −0.1266 (3) −0.9662 (2) 0.08608 (19) 0.0571 (6)
H13 −0.1306 −1.0367 0.1107 0.068*
C14 −0.2286 (3) −0.9906 (2) 0.00061 (19) 0.0575 (6)
C15 −0.2168 (3) −0.8849 (3) −0.0367 (2) 0.0693 (7)
H15 −0.2822 −0.9008 −0.0961 0.083*
C16 −0.1114 (3) −0.7576 (2) 0.0115 (2) 0.0619 (6)
H16 −0.1063 −0.6875 −0.0139 0.074*
C17 −0.3479 (3) −1.1281 (3) −0.0518 (2) 0.0844 (9)
H17A −0.3392 −1.1883 −0.0159 0.127*
H17B −0.3392 −1.1692 −0.1282 0.127*
H17C −0.4413 −1.1144 −0.0447 0.127*
C18 0.3179 (2) 0.32113 (19) 0.50215 (16) 0.0406 (4)
C19 0.4237 (2) 0.4068 (2) 0.59098 (17) 0.0491 (5)
H19 0.4989 0.3777 0.6082 0.059*
C20 0.4172 (3) 0.5357 (2) 0.65400 (19) 0.0552 (5)
H20 0.4894 0.5940 0.7133 0.066*
C21 0.3059 (2) 0.5800 (2) 0.6309 (2) 0.0533 (5)
C22 0.2026 (3) 0.4927 (2) 0.5408 (2) 0.0627 (6)
H22 0.1280 0.5223 0.5234 0.075*
C23 0.2062 (2) 0.3635 (2) 0.4759 (2) 0.0568 (6)
H23 0.1350 0.3061 0.4158 0.068*
C24 0.2962 (3) 0.7192 (2) 0.7032 (3) 0.0808 (9)
H24A 0.3768 0.7652 0.7615 0.121*
H24B 0.2062 0.7065 0.7337 0.121*
H24C 0.2995 0.7744 0.6603 0.121*
O1 −0.19121 (19) −0.49172 (16) 0.14755 (15) 0.0704 (5)
O2 −0.04323 (17) 0.05362 (15) 0.36092 (15) 0.0641 (4)
O3 0.03027 (16) −0.50532 (13) 0.25827 (12) 0.0530 (4)
O4 0.14116 (19) −0.49740 (17) 0.09439 (14) 0.0711 (5)
O5 0.24035 (19) −0.58494 (17) 0.21518 (16) 0.0765 (5)
O6 0.19989 (14) 0.06504 (13) 0.46365 (11) 0.0434 (3)
O7 0.2846 (2) 0.12386 (17) 0.30826 (13) 0.0737 (5)
O8 0.46239 (17) 0.14656 (16) 0.45212 (16) 0.0697 (5)
S1 0.32770 (6) 0.15885 (5) 0.42096 (4) 0.04743 (15)
S2 0.11835 (6) −0.57384 (5) 0.16304 (5) 0.05089 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0499 (11) 0.0367 (10) 0.0512 (12) 0.0144 (9) 0.0099 (9) 0.0180 (9)
C2 0.0514 (12) 0.0494 (12) 0.0672 (14) 0.0226 (10) 0.0022 (11) 0.0240 (11)
C3 0.0479 (12) 0.0505 (12) 0.0569 (13) 0.0156 (10) −0.0032 (10) 0.0186 (10)
C4 0.0441 (10) 0.0368 (10) 0.0396 (10) 0.0109 (8) 0.0060 (8) 0.0135 (8)
C4A 0.0397 (10) 0.0376 (10) 0.0388 (10) 0.0116 (8) 0.0063 (8) 0.0173 (8)
C5 0.0518 (13) 0.0649 (14) 0.0626 (14) 0.0238 (11) 0.0065 (10) 0.0291 (12)
C5A 0.0416 (10) 0.0503 (11) 0.0449 (11) 0.0135 (9) 0.0056 (8) 0.0244 (9)
C6 0.0480 (13) 0.0900 (19) 0.0858 (19) 0.0270 (13) 0.0071 (12) 0.0454 (16)
C7 0.0408 (13) 0.0908 (19) 0.0818 (18) 0.0077 (13) −0.0053 (12) 0.0438 (16)
C8 0.0501 (13) 0.0571 (14) 0.0672 (15) 0.0024 (11) −0.0046 (11) 0.0246 (12)
C8A 0.0405 (10) 0.0500 (11) 0.0461 (11) 0.0073 (9) 0.0040 (8) 0.0236 (9)
C9 0.0465 (11) 0.0404 (11) 0.0471 (11) 0.0076 (9) 0.0052 (9) 0.0158 (9)
C9A 0.0403 (10) 0.0390 (10) 0.0413 (10) 0.0106 (8) 0.0073 (8) 0.0164 (8)
C10 0.0428 (11) 0.0412 (11) 0.0455 (11) 0.0130 (9) 0.0052 (8) 0.0188 (9)
C11 0.0506 (11) 0.0455 (11) 0.0435 (11) 0.0206 (9) 0.0048 (9) 0.0130 (9)
C12 0.0610 (13) 0.0517 (12) 0.0408 (11) 0.0234 (10) 0.0063 (10) 0.0148 (9)
C13 0.0756 (16) 0.0475 (12) 0.0499 (13) 0.0205 (11) 0.0191 (11) 0.0198 (10)
C14 0.0603 (14) 0.0511 (13) 0.0481 (13) 0.0153 (11) 0.0129 (10) 0.0061 (10)
C15 0.0736 (17) 0.0646 (15) 0.0578 (15) 0.0224 (13) −0.0144 (12) 0.0108 (12)
C16 0.0776 (17) 0.0521 (13) 0.0565 (14) 0.0241 (12) −0.0045 (12) 0.0195 (11)
C17 0.0779 (19) 0.0662 (17) 0.0752 (19) 0.0004 (14) 0.0121 (15) 0.0069 (14)
C18 0.0389 (10) 0.0387 (10) 0.0435 (10) 0.0094 (8) 0.0053 (8) 0.0174 (8)
C19 0.0446 (11) 0.0488 (12) 0.0517 (12) 0.0149 (9) −0.0005 (9) 0.0173 (10)
C20 0.0555 (13) 0.0462 (12) 0.0507 (13) 0.0090 (10) −0.0001 (10) 0.0097 (10)
C21 0.0504 (12) 0.0403 (11) 0.0685 (15) 0.0115 (9) 0.0218 (11) 0.0218 (10)
C22 0.0486 (13) 0.0565 (14) 0.0903 (18) 0.0228 (11) 0.0054 (12) 0.0318 (13)
C23 0.0488 (12) 0.0510 (13) 0.0645 (14) 0.0116 (10) −0.0071 (10) 0.0194 (11)
C24 0.0789 (19) 0.0469 (14) 0.111 (2) 0.0224 (13) 0.0374 (17) 0.0217 (14)
O1 0.0628 (11) 0.0473 (9) 0.0759 (12) 0.0118 (8) −0.0066 (9) 0.0008 (8)
O2 0.0574 (10) 0.0394 (8) 0.0900 (12) 0.0142 (7) −0.0070 (8) 0.0204 (8)
O3 0.0605 (9) 0.0348 (7) 0.0639 (9) 0.0163 (7) 0.0168 (7) 0.0181 (7)
O4 0.0729 (11) 0.0681 (11) 0.0697 (11) 0.0077 (9) 0.0174 (9) 0.0350 (9)
O5 0.0566 (10) 0.0625 (11) 0.0955 (14) 0.0258 (8) −0.0134 (9) 0.0091 (9)
O6 0.0448 (8) 0.0353 (7) 0.0423 (7) 0.0068 (6) 0.0057 (6) 0.0108 (6)
O7 0.1037 (14) 0.0592 (10) 0.0436 (9) 0.0113 (9) 0.0181 (9) 0.0147 (7)
O8 0.0432 (9) 0.0529 (9) 0.1090 (14) 0.0186 (7) 0.0147 (9) 0.0240 (9)
S1 0.0476 (3) 0.0408 (3) 0.0491 (3) 0.0111 (2) 0.0124 (2) 0.0141 (2)
S2 0.0477 (3) 0.0467 (3) 0.0563 (3) 0.0174 (2) 0.0067 (2) 0.0158 (2)

Geometric parameters (Å, º)

C1—C2 1.379 (3) C13—C14 1.381 (3)
C1—O3 1.399 (2) C13—H13 0.9300
C1—C9A 1.401 (3) C14—C15 1.387 (4)
C2—C3 1.375 (3) C14—C17 1.507 (3)
C2—H2 0.9300 C15—C16 1.373 (3)
C3—C4 1.376 (3) C15—H15 0.9300
C3—H3 0.9300 C16—H16 0.9300
C4—C4A 1.396 (3) C17—H17A 0.9600
C4—O6 1.399 (2) C17—H17B 0.9600
C4A—C9A 1.413 (3) C17—H17C 0.9600
C4A—C10 1.500 (3) C18—C19 1.379 (3)
C5—C6 1.370 (3) C18—C23 1.380 (3)
C5—C5A 1.395 (3) C18—S1 1.744 (2)
C5—H5 0.9300 C19—C20 1.376 (3)
C5A—C8A 1.385 (3) C19—H19 0.9300
C5A—C10 1.484 (3) C20—C21 1.375 (3)
C6—C7 1.376 (4) C20—H20 0.9300
C6—H6 0.9300 C21—C22 1.378 (3)
C7—C8 1.380 (4) C21—C24 1.510 (3)
C7—H7 0.9300 C22—C23 1.375 (3)
C8—C8A 1.394 (3) C22—H22 0.9300
C8—H8 0.9300 C23—H23 0.9300
C8A—C9 1.484 (3) C24—H24A 0.9600
C9—O1 1.206 (2) C24—H24B 0.9600
C9—C9A 1.502 (3) C24—H24C 0.9600
C10—O2 1.209 (2) O3—S2 1.6126 (15)
C11—C12 1.383 (3) O4—S2 1.4180 (17)
C11—C16 1.383 (3) O5—S2 1.4140 (18)
C11—S2 1.740 (2) O6—S1 1.6094 (14)
C12—C13 1.377 (3) O7—S1 1.4153 (18)
C12—H12 0.9300 O8—S1 1.4185 (17)
C2—C1—O3 117.61 (18) C13—C14—C17 121.2 (2)
C2—C1—C9A 122.05 (18) C15—C14—C17 120.9 (2)
O3—C1—C9A 120.18 (18) C16—C15—C14 122.0 (2)
C3—C2—C1 119.6 (2) C16—C15—H15 119.0
C3—C2—H2 120.2 C14—C15—H15 119.0
C1—C2—H2 120.2 C15—C16—C11 118.5 (2)
C2—C3—C4 119.7 (2) C15—C16—H16 120.7
C2—C3—H3 120.1 C11—C16—H16 120.7
C4—C3—H3 120.1 C14—C17—H17A 109.5
C3—C4—C4A 122.00 (18) C14—C17—H17B 109.5
C3—C4—O6 117.29 (17) H17A—C17—H17B 109.5
C4A—C4—O6 120.54 (17) C14—C17—H17C 109.5
C4—C4A—C9A 118.59 (17) H17A—C17—H17C 109.5
C4—C4A—C10 121.41 (17) H17B—C17—H17C 109.5
C9A—C4A—C10 119.96 (17) C19—C18—C23 120.68 (19)
C6—C5—C5A 119.9 (2) C19—C18—S1 119.46 (16)
C6—C5—H5 120.0 C23—C18—S1 119.85 (16)
C5A—C5—H5 120.0 C20—C19—C18 119.4 (2)
C8A—C5A—C5 120.04 (19) C20—C19—H19 120.3
C8A—C5A—C10 121.30 (18) C18—C19—H19 120.3
C5—C5A—C10 118.63 (19) C21—C20—C19 121.2 (2)
C5—C6—C7 120.3 (2) C21—C20—H20 119.4
C5—C6—H6 119.8 C19—C20—H20 119.4
C7—C6—H6 119.8 C20—C21—C22 118.0 (2)
C6—C7—C8 120.4 (2) C20—C21—C24 120.9 (2)
C6—C7—H7 119.8 C22—C21—C24 121.1 (2)
C8—C7—H7 119.8 C23—C22—C21 122.2 (2)
C7—C8—C8A 119.9 (2) C23—C22—H22 118.9
C7—C8—H8 120.0 C21—C22—H22 118.9
C8A—C8—H8 120.0 C22—C23—C18 118.4 (2)
C5A—C8A—C8 119.3 (2) C22—C23—H23 120.8
C5A—C8A—C9 121.30 (18) C18—C23—H23 120.8
C8—C8A—C9 119.3 (2) C21—C24—H24A 109.5
O1—C9—C8A 120.74 (19) C21—C24—H24B 109.5
O1—C9—C9A 122.00 (19) H24A—C24—H24B 109.5
C8A—C9—C9A 117.25 (17) C21—C24—H24C 109.5
C1—C9A—C4A 117.97 (17) H24A—C24—H24C 109.5
C1—C9A—C9 121.38 (17) H24B—C24—H24C 109.5
C4A—C9A—C9 120.65 (17) C1—O3—S2 116.74 (12)
O2—C10—C5A 119.98 (18) C4—O6—S1 116.91 (11)
O2—C10—C4A 122.49 (18) O7—S1—O8 118.31 (12)
C5A—C10—C4A 117.53 (17) O7—S1—O6 107.69 (9)
C12—C11—C16 121.1 (2) O8—S1—O6 108.43 (9)
C12—C11—S2 119.64 (17) O7—S1—C18 111.86 (11)
C16—C11—S2 119.27 (17) O8—S1—C18 109.96 (10)
C13—C12—C11 118.8 (2) O6—S1—C18 98.69 (8)
C13—C12—H12 120.6 O5—S2—O4 119.21 (12)
C11—C12—H12 120.6 O5—S2—O3 107.16 (10)
C12—C13—C14 121.7 (2) O4—S2—O3 107.48 (10)
C12—C13—H13 119.2 O5—S2—C11 110.58 (10)
C14—C13—H13 119.2 O4—S2—C11 111.42 (11)
C13—C14—C15 117.8 (2) O3—S2—C11 98.85 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O4i 0.93 2.48 3.333 (3) 153
C3—H3···O8ii 0.93 2.49 3.245 (3) 139

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5268).

References

  1. Bruker, (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cao, L.-P., Wang, Y.-Z., Gao, M. & Zhou, B.-H. (2007). Acta Cryst. E63, o1876–o1877.
  3. Carland, M., Grannas, M. J., Cairns, M. J., Roknic, V. J., Denny, W. A., McFadyen, W. D. & Murray, V. (2010). J. Inorg. Biochem. 104, 815–819. [DOI] [PubMed]
  4. Cho, E. J., Yeo, H. M., Ryu, B. J., Jeong, H. A. & Nam, K. C. (2006). Bull. Korean Chem. Soc. 27, 1967–1968.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. García-Sosa, K., Villarreal-Alvarez, N., Lübben, P. & Peña-Rodríguez, L. M. (2006). J. Mex. Chem. Soc. 50, 76–78.
  7. Huang, S. H., Chiu, H. F., Lee, A. L., Guo, C. L. & Yuan, C. L. (2004). Bioorg. Med. Chem. 12, 6163–6170. [DOI] [PubMed]
  8. Meng, Q., Zhang, W., Yu, J. & Huang, D. (2005). Dyes Pigm. 65, 281–283.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Swaminathan, S. & Nigam, G. D. (1967). Curr. Sci. 36, 541.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Yatsenko, A. V., Chernyshev, V. V., Popov, S. I., Sonneveld, E. J. & Schenk, H. (2000). Dyes Pigm. 45, 169–176.
  13. Zielske, A. G. (1987). J. Org. Chem. 52, 1305–1309.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015814/cv5268sup1.cif

e-68-o1423-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015814/cv5268Isup2.hkl

e-68-o1423-Isup2.hkl (269.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015814/cv5268Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES