Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1429. doi: 10.1107/S1600536812015280

1,3-Bis[(naphthalen-2-ylsulfan­yl)meth­yl]benzene

Esteban Padilla-Mata a, Juan M German-Acacio b, Marco A García-Eleno a, Reyna Reyes-Martínez a,*, David Morales-Morales a
PMCID: PMC3344549  PMID: 22590311

Abstract

Mol­ecules of the title compound, C28H22S2, are located on a crystallographic mirror plane with one half-mol­ecule in the asymmetric unit. The dihedral angle between the phenyl ring and the naphthyl unit is 83.14 (7)°. In the crystal, mol­ecules are inter­connected by C—H⋯S and C—H⋯π inter­actions.

Related literature  

For information on pincer compounds, see: Albrecht & Morales-Morales (2009); Arroyo et al. (2003); Morales-Morales (2004, 2008, 2009); Morales-Morales & Jensen (2007).graphic file with name e-68-o1429-scheme1.jpg

Experimental  

Crystal data  

  • C28H22S2

  • M r = 422.58

  • Orthorhombic, Inline graphic

  • a = 8.651 (2) Å

  • b = 41.235 (10) Å

  • c = 6.0517 (14) Å

  • V = 2158.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.48 × 0.42 × 0.07 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: analytical (SADABS; Bruker; 2007) T min = 0.893, T max = 0.979

  • 7907 measured reflections

  • 1994 independent reflections

  • 1345 reflections with I > 2σ(I)

  • R int = 0.065

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.124

  • S = 1.02

  • 1994 reflections

  • 139 parameters

  • H-atom parameters not refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015280/bt5855sup1.cif

e-68-o1429-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015280/bt5855Isup2.hkl

e-68-o1429-Isup2.hkl (98.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015280/bt5855Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C4/C2′/C3′ and C6–C9/C14/C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯S1i 0.97 2.86 3.806 (4) 164
C1—H1⋯Cg1i 0.93 2.94 3.867 (4) 173
C13—H13⋯Cg2ii 0.93 2.76 3.503 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RRM thanks CONACYT for a posdoctoral scholarship (agreement No. 290586-UNAM). Support of this research was provided by CONACYT (grant No. 154732) and PAPIIT (grant No. IN201711). DMM would like acknowledge Dr Ruben A. Toscano for technical assistance.

supplementary crystallographic information

Comment

Pincer compounds represent a group of species with very particular and interesting properties among which their high thermal stability and unusual reactivities that confer to the metal complexes they form stand out. It is due, to the characteristics of robustness and thermal stability that pincer compounds have attracted the continuos attention of the chemistry community for multiple applications (Morales-Morales et al., 2004, Morales-Morales et al. 2007, Albrecht et al., 2009, Morales-Morales, 2008, Morales-Morales, 2009). In the beginning, the very simple backbone exhibited by these compounds did not anticipate the wide variety of possible functionalization in the main frame of the complex.

Among these species, those including sulfur as donor atom have been scarcely studied (Arroyo et al., 2003), mostly due to the well known tendency of sulfur to kill the activity of homogeneous catalysts. Thus, following our continuous interest in the synthesis of pincer type ligands we report the crystal structure of the potentially pincer sulfur based ligand 1,3-bis((naphthalen-2-ylthio)methyl)benzene.

In the asymmetric unit only half of the molecule of the compound 1,3-bis(naphthalen-2-ylthio)methyl)benzene is found. The other half is generated by a mirror plane. The molecular structure of the title compound is shown in Figure 1. The phenyl and the naphthyl enclose a dihedral angle of 83.14 (7)°. The two naphthyl planes have a dihedral angle of 45.64 (4)°. The sulfur atoms form weak hydrogen bonds (C5—H5···S1). Two C—H···π interactions [C1—H1···Cg1 and C13—H13···Cg2] further connect the molecules into ribbons running along the a-axis

Experimental

To a solution of 2-naphthalenethiol (0.320 g, 2.0 mmol), 0.057 g (2.5 mmol) of NaH in toluene (100 ml) were added. The reaction mixture was stirred at room temperature for 3 h. After this time, 0.264 g (1 mmol) of 1,3-bis(bromomethyl)benzene were added to yield a colourless solution that was further stirred for 5 h. Then, the solvent was evaporated under vacumm affording 1,3-bis[(naphthalen-2-ylsulfanyl)methyl]benzene (0.24 g) as a microcrystalline white powder (93% based on 1,3-Bis(bromomethyl)benzene). mp: 120–122 °C, MS—EI (m/z): 422 (100%) [M]+, 1H-NMR (300 MHz, CDCl3) δ (p.p.m.): 4.05 (s, 4H), 7.06–7.12 (d, 3H), 7.22 (s, 1H), 7.24 (d, 1H), 7.27 (d, 1H), 7.29–7.39 (m, 4H), 7.54–7.70 (m, 2H). 13 C-NMR (757 MHz, CDCl3) δ (p.p.m.): 38.82, 125.79, 126.50, 127.22, 127.72, 127.81, 127.85, 128.36, 128.75, 129.45, 133.72, 133.76, 137.73.

Refinement

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H), and refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 40% probability.

Fig. 2.

Fig. 2.

The title compound is linked by C—H···S and C—H···π intermolecular interactions along the a axes, the hydrogen atoms for the interactions are drawn.

Crystal data

C28H22S2 F(000) = 888
Mr = 422.58 Dx = 1.300 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 2418 reflections
a = 8.651 (2) Å θ = 3.0–25.1°
b = 41.235 (10) Å µ = 0.26 mm1
c = 6.0517 (14) Å T = 298 K
V = 2158.9 (9) Å3 Plates, colorless
Z = 4 0.48 × 0.42 × 0.07 mm

Data collection

Bruker SMART APEX CCD diffractometer 1994 independent reflections
Radiation source: fine-focus sealed tube 1345 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.065
Detector resolution: 0.661 pixels mm-1 θmax = 25.4°, θmin = 3.0°
ω–scans h = −10→9
Absorption correction: analytical (SADABS; Bruker; 2007) k = −43→48
Tmin = 0.893, Tmax = 0.979 l = −7→7
7907 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters not refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0535P)2] where P = (Fo2 + 2Fc2)/3
1994 reflections (Δ/σ)max < 0.001
139 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.49764 (9) 0.180146 (17) 0.07221 (12) 0.0516 (3)
C1 0.5547 (5) 0.2500 0.3529 (6) 0.0456 (10)
H1 0.6393 0.2500 0.2581 0.055*
C2 0.4932 (3) 0.22086 (6) 0.4217 (4) 0.0432 (7)
C3 0.3680 (4) 0.22111 (7) 0.5638 (4) 0.0489 (8)
H3 0.3254 0.2017 0.6123 0.059*
C4 0.3065 (5) 0.2500 0.6332 (6) 0.0533 (11)
H4 0.2221 0.2500 0.7285 0.064*
C5 0.5635 (4) 0.18939 (6) 0.3482 (5) 0.0561 (8)
H5A 0.5335 0.1722 0.4484 0.067*
H5B 0.6754 0.1911 0.3498 0.067*
C6 0.6690 (3) 0.12415 (6) 0.1558 (4) 0.0419 (7)
H6 0.7048 0.1337 0.2853 0.050*
C7 0.5702 (3) 0.14102 (6) 0.0228 (4) 0.0417 (7)
C8 0.5192 (3) 0.12636 (7) −0.1764 (4) 0.0476 (7)
H8 0.4513 0.1376 −0.2677 0.057*
C9 0.5670 (4) 0.09654 (7) −0.2359 (4) 0.0491 (8)
H9 0.5331 0.0877 −0.3688 0.059*
C10 0.7184 (4) 0.04703 (7) −0.1541 (5) 0.0560 (8)
H10 0.6865 0.0377 −0.2863 0.067*
C11 0.8133 (4) 0.03010 (7) −0.0168 (5) 0.0603 (9)
H11 0.8453 0.0093 −0.0553 0.072*
C12 0.8624 (4) 0.04379 (7) 0.1811 (5) 0.0558 (8)
H12 0.9270 0.0321 0.2744 0.067*
C13 0.8166 (3) 0.07420 (6) 0.2392 (5) 0.0474 (7)
H13 0.8505 0.0830 0.3720 0.057*
C14 0.7181 (3) 0.09256 (6) 0.1010 (4) 0.0392 (6)
C15 0.6678 (3) 0.07843 (6) −0.0998 (4) 0.0426 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0523 (5) 0.0423 (4) 0.0602 (5) 0.0052 (4) −0.0078 (4) 0.0030 (4)
C1 0.039 (2) 0.052 (3) 0.045 (2) 0.000 0.0039 (18) 0.000
C2 0.0429 (16) 0.0472 (16) 0.0393 (14) 0.0059 (15) −0.0087 (14) 0.0035 (12)
C3 0.0513 (19) 0.0522 (18) 0.0431 (16) −0.0068 (16) −0.0077 (14) 0.0116 (14)
C4 0.046 (3) 0.074 (3) 0.040 (2) 0.000 0.0090 (19) 0.000
C5 0.066 (2) 0.0448 (16) 0.0580 (17) 0.0110 (16) −0.0093 (16) 0.0050 (15)
C6 0.0420 (17) 0.0402 (15) 0.0435 (14) −0.0036 (13) −0.0045 (13) −0.0030 (13)
C7 0.0382 (16) 0.0395 (15) 0.0473 (16) −0.0037 (13) 0.0010 (13) 0.0034 (13)
C8 0.0489 (19) 0.0495 (17) 0.0445 (16) −0.0017 (15) −0.0083 (14) 0.0061 (14)
C9 0.058 (2) 0.0524 (18) 0.0372 (15) −0.0095 (15) −0.0059 (14) −0.0013 (14)
C10 0.066 (2) 0.0489 (18) 0.0533 (18) −0.0071 (16) 0.0021 (16) −0.0089 (16)
C11 0.075 (2) 0.0375 (16) 0.068 (2) 0.0045 (16) 0.0041 (18) −0.0011 (16)
C12 0.063 (2) 0.0460 (17) 0.0586 (19) 0.0035 (16) −0.0019 (17) 0.0070 (15)
C13 0.0508 (18) 0.0431 (16) 0.0483 (16) 0.0008 (14) −0.0011 (14) 0.0020 (14)
C14 0.0413 (16) 0.0360 (14) 0.0404 (15) −0.0049 (13) 0.0017 (12) 0.0015 (12)
C15 0.0492 (18) 0.0385 (15) 0.0400 (15) −0.0085 (14) 0.0037 (13) −0.0004 (12)

Geometric parameters (Å, º)

S1—C7 1.757 (3) C7—C8 1.419 (4)
S1—C5 1.805 (3) C8—C9 1.346 (4)
C1—C2 1.378 (3) C8—H8 0.9300
C1—C2i 1.378 (3) C9—C15 1.414 (4)
C1—H1 0.9300 C9—H9 0.9300
C2—C3 1.384 (4) C10—C11 1.361 (4)
C2—C5 1.501 (4) C10—C15 1.406 (4)
C3—C4 1.371 (3) C10—H10 0.9300
C3—H3 0.9300 C11—C12 1.390 (4)
C4—C3i 1.371 (3) C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.361 (4)
C5—H5A 0.9700 C12—H12 0.9300
C5—H5B 0.9700 C13—C14 1.414 (4)
C6—C7 1.365 (4) C13—H13 0.9300
C6—C14 1.410 (3) C14—C15 1.416 (3)
C6—H6 0.9300
C7—S1—C5 103.79 (13) C9—C8—C7 121.4 (3)
C2—C1—C2i 121.4 (4) C9—C8—H8 119.3
C2—C1—H1 119.3 C7—C8—H8 119.3
C2i—C1—H1 119.3 C8—C9—C15 121.1 (3)
C1—C2—C3 118.9 (3) C8—C9—H9 119.5
C1—C2—C5 120.5 (3) C15—C9—H9 119.5
C3—C2—C5 120.5 (3) C11—C10—C15 121.2 (3)
C4—C3—C2 120.1 (3) C11—C10—H10 119.4
C4—C3—H3 120.0 C15—C10—H10 119.4
C2—C3—H3 120.0 C10—C11—C12 120.1 (3)
C3i—C4—C3 120.7 (4) C10—C11—H11 119.9
C3i—C4—H4 119.6 C12—C11—H11 119.9
C3—C4—H4 119.6 C13—C12—C11 120.5 (3)
C2—C5—S1 109.20 (19) C13—C12—H12 119.7
C2—C5—H5A 109.8 C11—C12—H12 119.7
S1—C5—H5A 109.8 C12—C13—C14 121.0 (3)
C2—C5—H5B 109.8 C12—C13—H13 119.5
S1—C5—H5B 109.8 C14—C13—H13 119.5
H5A—C5—H5B 108.3 C6—C14—C13 122.5 (2)
C7—C6—C14 121.4 (2) C6—C14—C15 119.3 (2)
C7—C6—H6 119.3 C13—C14—C15 118.2 (2)
C14—C6—H6 119.3 C10—C15—C9 122.9 (3)
C6—C7—C8 118.6 (2) C10—C15—C14 118.9 (3)
C6—C7—S1 126.3 (2) C9—C15—C14 118.2 (2)
C8—C7—S1 115.1 (2)

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C4/C2'/C3' and C6–C9/C14/C15 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C5—H5B···S1ii 0.97 2.86 3.806 (4) 164
C1—H1···Cg1ii 0.93 2.94 3.867 (4) 173
C13—H13···Cg2iii 0.93 2.76 3.503 (3) 138

Symmetry codes: (ii) x+1/2, y, −z+1/2; (iii) x+1/2, −y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5855).

References

  1. Albrecht, M. & Morales-Morales, D. (2009). Iridium Complexes in Organic Synthesis, pp. 299–323. Germany: Wiley-VCH.
  2. Arroyo, M., Cervantes, R., Gómez-Benitez, V., López, P., Morales-Morales, D., Torrens, H. & Toscano, R. A. (2003). Synthesis, pp. 1565–1568.
  3. Bruker (2007). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Morales-Morales, D. (2004). Rev. Soc. Quim. Mex. 48, 338–346.
  5. Morales-Morales, D. (2008). Modern Carbonylation Methods, pp. 20–64. Germany: Wiley–VCH.
  6. Morales-Morales, D. (2009). Iridium Complexes in Organic Synthesis, pp. 325–344. Germany: Wiley-VCH.
  7. Morales-Morales, D. & Jensen, C. M. (2007). Editors. The Chemistry of Pincer Compounds Amsterdam: Elsevier.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015280/bt5855sup1.cif

e-68-o1429-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015280/bt5855Isup2.hkl

e-68-o1429-Isup2.hkl (98.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015280/bt5855Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES