Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1433. doi: 10.1107/S1600536812014687

(E,E)-N′-{4-[(2-Benzoyl­hydrazin-1-yl­idene)meth­yl]benzyl­idene}benzo­hydrazide

Ramin Karimian a,, Hassan Hosseini-Monfared b, Rahman Bikas c,*, N Burcu Arslan d, Canan Kazak d, Ahmet Koroglu d
PMCID: PMC3344553  PMID: 22590315

Abstract

In the title compound, C22H18N4O2, the mol­ecules lie across an inversion centre. The dihedral angle between the mean planes of the central and terminal benzene rings is 66.03 (2)°. The mol­ecule displays trans and anti conformations about the C=N and N—N bonds, respectively. In the crystal, N—H⋯O hydrogen bonds, with the O atoms of C=O groups acting as acceptors, link the mol­ecules into a chain along [101].

Related literature  

For historical background to aroylhydrazones, see: Savanini et al. (2002). For related structures, see: Bikas et al. (2012, 2010a ,b ); Hosseini Monfared et al. (2010a ). For catalytic applications of aroylhydrazones, see: Hosseini Monfared et al. (2010b ).graphic file with name e-68-o1433-scheme1.jpg

Experimental  

Crystal data  

  • C22H18N4O2

  • M r = 370.40

  • Monoclinic, Inline graphic

  • a = 30.569 (3) Å

  • b = 5.1845 (3) Å

  • c = 12.5191 (11) Å

  • β = 112.408 (7)°

  • V = 1834.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.42 × 0.22 × 0.08 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.976, T max = 0.992

  • 13265 measured reflections

  • 1905 independent reflections

  • 965 reflections with I > 2σ(I)

  • R int = 0.105

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.078

  • S = 0.94

  • 1905 reflections

  • 163 parameters

  • All H-atom parameters refined

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014687/qm2059sup1.cif

e-68-o1433-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014687/qm2059Isup2.hkl

e-68-o1433-Isup2.hkl (91.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014687/qm2059Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 2.19 (2) 3.056 (3) 171 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Islamic Azad University (Tabriz Branch), the University of Zanjan and Ondokuz Mayis University.

supplementary crystallographic information

Comment

The design, synthesis, and characterization of metal complexes with Schiff-base ligands play a vital role in the coordination chemistry of transition metals. Hydrazones are a special group of compounds in the Schiff base family that are characterized by the presence of RR'C=N–N=C(O)R'' which two inter-linked nitrogen atoms (–N—N–) separate them from imines, oximes, etc. Hydrazone ligands derived from the condensation of acid hydrazides (R–CO–NH–NH2) with aromatic carbonyl compounds are important O, N-donor ligands. As biologically active compounds, hydrazones find application in the treatment of diseases such as tuberculosis, leprosy and mental disorder and also as anti-tumor agents. Hydrazone Schiff bases also have wide spread applications in fields such as coordination chemistry, bioinorganic chemistry , magnetics, electronics, nonlinear optics and fluorescent materials. Aroylhydrazone complexes also seem to be good candidates for catalytic oxidation studies because of their resistance to oxidation (Hosseini Monfared et al., 2010b). As part of our studies on the synthesis and characterization of hydrazone derivatives (Bikas et al., 2012, 2010a,b), we report here the crystal structure of (N',N''E,N',N''E)-N',N''-(1,4-phenylenebis(methan-1-yl-1-ylidene))dibenzohydrazide. The molecules of C22H18N4O2, lie across inversion centres and the asymmetric unit contains a half molecule (Fig. 1). The terminal benzene rings are parallel to each other and the distance of two planes which embrace these rings is 3.168 Å apart. The dihedral angle between the mean planes of the central and two terminal benzene rings is 66.03 (2)°. The molecule displays a trans configuration with respect to the C=N and N—N bonds. The packing diagram of the title compound is shown in Fig. 2. There are two strong intermolecular N—H···O hydrogen bonds in which the O atoms of the carbonyl groups (–C=O) act as hydrogen acceptors for the hydrogen of N—H and a one-dimensional chain is formed by these hydrogen bonds (Fig. 3).

Experimental

For preparing the title compound a methanol (10 ml) solution of benzhydrazide (3 mmol) was added drop-wise to a methanol solution (10 ml) of terephthalaldehyde (1.5 mmol), and the mixture was refluxed for 4 h. The solution was then evaporated on a steam bath to 5 cm3 and cooled to room temperature. The white precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Colorless crystals were obtained from its methanol solution by thermal gradient method. Yield: 93%. IR (cm-1): 3253 (s, broad, N—H), 1654 (vs, C=O), 1607 (s, C=N), 1546 (vs), 1507 (m), 1361 (s), 1284 (vs), 1146 (s), 1069 (s), 969 (m), 915 (m), 846 (m), 723 (s), 692 (s), 661 (s), 569 (w), 538 (w), 423 (w).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing diagram of the title compound.

Fig. 3.

Fig. 3.

Hydrogen bonding in the title compound. The blue dashed lines indicate intermolecular N–H···O hydrogen bonds.

Crystal data

C22H18N4O2 F(000) = 776
Mr = 370.40 Dx = 1.341 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 8004 reflections
a = 30.569 (3) Å θ = 1.4–27.5°
b = 5.1845 (3) Å µ = 0.09 mm1
c = 12.5191 (11) Å T = 293 K
β = 112.408 (7)° Prism, colorless
V = 1834.3 (3) Å3 0.42 × 0.22 × 0.08 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 1905 independent reflections
Radiation source: fine-focus sealed tube 965 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.105
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 1.4°
rotation method scans h = −38→38
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −6→6
Tmin = 0.976, Tmax = 0.992 l = −15→15
13265 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 All H-atom parameters refined
S = 0.94 w = 1/[σ2(Fo2) + (0.0207P)2] where P = (Fo2 + 2Fc2)/3
1905 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 0.11 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.84753 (7) 0.1985 (4) 0.32678 (19) 0.0454 (6)
C2 0.84744 (9) 0.3457 (5) 0.4191 (2) 0.0562 (7)
C3 0.81956 (9) 0.2794 (6) 0.4790 (2) 0.0658 (8)
C4 0.79059 (10) 0.0693 (6) 0.4454 (3) 0.0695 (8)
C5 0.78956 (10) −0.0782 (5) 0.3532 (3) 0.0711 (8)
C6 0.81817 (8) −0.0140 (5) 0.2948 (2) 0.0582 (7)
C7 0.87799 (7) 0.2804 (4) 0.26408 (19) 0.0475 (6)
C8 0.94196 (8) −0.0556 (5) 0.1321 (2) 0.0502 (6)
C10 0.96656 (9) 0.1846 (5) −0.0081 (2) 0.0558 (7)
C11 1.00525 (9) −0.2099 (5) 0.0707 (2) 0.0553 (7)
C12 0.97114 (7) −0.0250 (4) 0.06315 (18) 0.0458 (6)
N1 0.89465 (7) 0.0866 (4) 0.21865 (17) 0.0543 (6)
N2 0.92141 (7) 0.1407 (3) 0.15428 (16) 0.0516 (5)
O1 0.88701 (6) 0.5082 (3) 0.25515 (14) 0.0650 (5)
H1 0.8912 (7) −0.074 (4) 0.2351 (18) 0.055 (7)*
H2 0.9404 (6) −0.232 (4) 0.1624 (16) 0.052 (6)*
H3 0.8174 (7) −0.118 (4) 0.2312 (19) 0.058 (7)*
H4 0.9424 (8) 0.305 (4) −0.0167 (18) 0.065 (7)*
H5 1.0094 (7) −0.343 (4) 0.1209 (18) 0.056 (7)*
H6 0.8219 (8) 0.387 (4) 0.546 (2) 0.078 (8)*
H7 0.8670 (7) 0.499 (4) 0.4386 (17) 0.068 (7)*
H8 0.7688 (9) −0.228 (5) 0.324 (2) 0.101 (10)*
H9 0.7717 (9) 0.017 (5) 0.489 (2) 0.096 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0450 (14) 0.0457 (13) 0.0519 (16) 0.0066 (11) 0.0255 (13) 0.0039 (12)
C2 0.0568 (16) 0.0572 (16) 0.0627 (18) −0.0026 (13) 0.0319 (15) −0.0062 (13)
C3 0.0676 (17) 0.0798 (19) 0.0621 (19) 0.0055 (16) 0.0385 (17) −0.0027 (16)
C4 0.0691 (19) 0.0738 (19) 0.084 (2) 0.0066 (15) 0.0495 (18) 0.0112 (17)
C5 0.0715 (19) 0.0601 (17) 0.099 (2) −0.0068 (15) 0.0518 (19) −0.0044 (17)
C6 0.0618 (15) 0.0521 (14) 0.0735 (19) −0.0023 (13) 0.0401 (15) −0.0111 (15)
C7 0.0477 (13) 0.0479 (14) 0.0513 (16) 0.0053 (12) 0.0239 (12) 0.0012 (12)
C8 0.0532 (15) 0.0486 (16) 0.0569 (16) 0.0007 (12) 0.0301 (13) −0.0008 (12)
C10 0.0580 (16) 0.0553 (15) 0.0662 (18) 0.0137 (13) 0.0375 (15) 0.0052 (13)
C11 0.0655 (16) 0.0507 (14) 0.0605 (18) 0.0083 (13) 0.0362 (15) 0.0045 (13)
C12 0.0454 (14) 0.0483 (13) 0.0504 (15) −0.0004 (12) 0.0259 (12) −0.0059 (12)
N1 0.0648 (14) 0.0476 (12) 0.0704 (15) 0.0036 (11) 0.0481 (13) 0.0054 (11)
N2 0.0531 (12) 0.0537 (12) 0.0599 (13) 0.0006 (9) 0.0349 (11) −0.0002 (10)
O1 0.0857 (12) 0.0445 (9) 0.0850 (13) −0.0003 (9) 0.0552 (10) 0.0020 (9)

Geometric parameters (Å, º)

C1—C6 1.381 (3) C7—N1 1.346 (3)
C1—C2 1.386 (3) C8—N2 1.281 (3)
C1—C7 1.490 (3) C8—C12 1.467 (3)
C2—C3 1.377 (3) C8—H2 1.00 (2)
C2—H7 0.97 (2) C10—C11i 1.375 (3)
C3—C4 1.365 (4) C10—C12 1.379 (3)
C3—H6 0.99 (2) C10—H4 0.94 (2)
C4—C5 1.374 (3) C11—C10i 1.375 (3)
C4—H9 0.98 (3) C11—C12 1.392 (3)
C5—C6 1.378 (3) C11—H5 0.91 (2)
C5—H8 0.98 (3) N1—N2 1.378 (2)
C6—H3 0.95 (2) N1—H1 0.87 (2)
C7—O1 1.228 (2)
C6—C1—C2 118.3 (2) O1—C7—C1 121.95 (19)
C6—C1—C7 122.8 (2) N1—C7—C1 115.0 (2)
C2—C1—C7 118.9 (2) N2—C8—C12 120.0 (2)
C3—C2—C1 121.0 (3) N2—C8—H2 123.2 (11)
C3—C2—H7 121.3 (13) C12—C8—H2 116.7 (11)
C1—C2—H7 117.7 (13) C11i—C10—C12 120.8 (2)
C4—C3—C2 119.6 (3) C11i—C10—H4 120.5 (13)
C4—C3—H6 122.6 (14) C12—C10—H4 118.5 (13)
C2—C3—H6 117.8 (14) C10i—C11—C12 120.8 (2)
C3—C4—C5 120.5 (3) C10i—C11—H5 120.9 (13)
C3—C4—H9 120.0 (15) C12—C11—H5 118.2 (13)
C5—C4—H9 119.4 (15) C10—C12—C11 118.4 (2)
C4—C5—C6 119.7 (3) C10—C12—C8 122.1 (2)
C4—C5—H8 124.0 (17) C11—C12—C8 119.5 (2)
C6—C5—H8 116.3 (17) C7—N1—N2 120.0 (2)
C5—C6—C1 120.8 (3) C7—N1—H1 120.9 (14)
C5—C6—H3 119.3 (13) N2—N1—H1 118.9 (14)
C1—C6—H3 119.9 (13) C8—N2—N1 114.51 (19)
O1—C7—N1 123.0 (2)
C6—C1—C2—C3 1.3 (4) C2—C1—C7—N1 149.0 (2)
C7—C1—C2—C3 179.4 (2) C11i—C10—C12—C11 0.4 (4)
C1—C2—C3—C4 −1.7 (4) C11i—C10—C12—C8 179.2 (2)
C2—C3—C4—C5 0.9 (4) C10i—C11—C12—C10 −0.4 (4)
C3—C4—C5—C6 0.3 (4) C10i—C11—C12—C8 −179.3 (2)
C4—C5—C6—C1 −0.7 (4) N2—C8—C12—C10 −20.1 (3)
C2—C1—C6—C5 −0.1 (4) N2—C8—C12—C11 158.7 (2)
C7—C1—C6—C5 −178.1 (2) O1—C7—N1—N2 −3.0 (3)
C6—C1—C7—O1 147.0 (2) C1—C7—N1—N2 177.04 (19)
C2—C1—C7—O1 −30.9 (3) C12—C8—N2—N1 179.3 (2)
C6—C1—C7—N1 −33.0 (3) C7—N1—N2—C8 168.7 (2)

Symmetry code: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1ii 0.87 (2) 2.19 (2) 3.056 (3) 171 (2)

Symmetry code: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2059).

References

  1. Bikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010b). Acta Cryst. E66, o2073. [DOI] [PMC free article] [PubMed]
  2. Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010a). Acta Cryst. E66, o2015. [DOI] [PMC free article] [PubMed]
  3. Bikas, R., Hosseini Monfared, H., Lis, T. & Siczek, M. (2012). Acta Cryst. E68, o367–o368. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Hosseini Monfared, H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236–o237. [DOI] [PMC free article] [PubMed]
  7. Hosseini Monfared, H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574–2583.
  8. Savanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812014687/qm2059sup1.cif

e-68-o1433-sup1.cif (15.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812014687/qm2059Isup2.hkl

e-68-o1433-Isup2.hkl (91.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812014687/qm2059Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES