Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1438. doi: 10.1107/S1600536812015358

4-Benzyl-8-phenyl-1-thia-4-aza­spiro­[4.5]decan-3-one

Hoong-Kun Fun a,*,, Tze Shyang Chia a, Poovan Shanmugavelan b, Alagusundaram Ponnuswamy b
PMCID: PMC3344557  PMID: 22590319

Abstract

In the title compound, C21H23NOS, the thia­zolidine ring adopts a twist conformation about one of its C—S bonds, while the cyclo­hexane ring has a chair conformation. The S and N atoms attached to the spiro C atom are in axial and equatorial orientations, respectively. The thia­zolidine ring forms dihedral angles of 86.24 (14) and 31.82 (15)° with the directly attached and remote terminal benzene rings, respectively. The dihedral angle between the two terminal benzene rings is 86.74 (14)°. In the crystal, the only significant directional inter­action is a weak C—H⋯π bond, which generates [010] chains.

Related literature  

For the pharmacological activity of spiro­thia­zolidin-4-ones, see: Singh et al. (2006); Kasimogullari & Cesur (2004); Dandia et al. (2004); Sahu et al. (2006). For a related structure, see: Akkurt et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-o1438-scheme1.jpg

Experimental  

Crystal data  

  • C21H23NOS

  • M r = 337.46

  • Monoclinic, Inline graphic

  • a = 9.8299 (9) Å

  • b = 15.3823 (14) Å

  • c = 12.0833 (10) Å

  • β = 108.717 (4)°

  • V = 1730.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.33 × 0.21 × 0.14 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.939, T max = 0.973

  • 10508 measured reflections

  • 3534 independent reflections

  • 2144 reflections with I > 2σ(I)

  • R int = 0.080

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.145

  • S = 1.01

  • 3534 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015358/hb6732sup1.cif

e-68-o1438-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015358/hb6732Isup2.hkl

e-68-o1438-Isup2.hkl (173.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015358/hb6732Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg1i 0.95 2.72 3.565 (3) 149

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Spirothiazolidin-4-ones are well known to possess varied pharmacological activities such as anti-fungal (Singh et al., 2006), anti-mycobacterial (Kasimogullari & Cesur, 2004), anti-TB (Dandia et al., 2004), and anti-bacterial (Sahu et al., 2006) properties. As a part of our studies in this area, we now describe the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) is shown in Fig. 1. The central thiazolidine ring (S1/N1/C8–C10) is twisted with deviations from the least-squares plane of 0.199 (1) and -0.211 (3) Å for atoms S1 and C10, respectively. The cyclohexane ring (C10–C15) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975), Q = 0.583 (3) Å, θ = 173.4 (3)° and φ = 347 (2)°. The thiazolidine ring forms dihedral angles of 86.24 (14) and 31.82 (15)° with the terminal C1–C6 and C16–C21 benzene rings, respectively. The dihedral angle between the two terminal benzene rings is 86.74 (14)°. Bond lengths and angles are comparable to a related structure (Akkurt et al., 2008).

The only significant intermolecular interaction in the crystal is a weak C—H···Cg1 interaction (Table 1) where Cg1 is the centroid of C1–C6 ring.

Experimental

A mixture of triphenyl phosphine (0.43 g, 1.1 mmol), benzyl azide (0.20 g, 1.0 mmol), 4-phenylcylohexanone (0.28 g, 1.0 mmol) and mercaptoacetic acid (0.15 g, 1.1 mmol) was heated to reflux in acetonitrile (5 ml) for 4 h. The reaction mixture was allowed to stand at room temperature. After the solvent has been evaporated, the residue was purified by column chromatography using silica gel as the stationary phase (60–120 mesh) and petroleum ether-ethyl acetate (93:7) as the mobile phase to afford the title compound. Yield: 0.48 g (95%); M.p.: 130–131 °C. Colourless crystals were obtained by recrystallization from ethanol solution.

Refinement

All H atoms were positioned geometrically [C—H = 0.95, 0.99 or 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Crystal data

C21H23NOS F(000) = 720
Mr = 337.46 Dx = 1.295 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2184 reflections
a = 9.8299 (9) Å θ = 2.6–29.6°
b = 15.3823 (14) Å µ = 0.19 mm1
c = 12.0833 (10) Å T = 100 K
β = 108.717 (4)° Block, colourless
V = 1730.4 (3) Å3 0.33 × 0.21 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3534 independent reflections
Radiation source: fine-focus sealed tube 2144 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.080
φ and ω scans θmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→11
Tmin = 0.939, Tmax = 0.973 k = −16→19
10508 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.185P] where P = (Fo2 + 2Fc2)/3
3534 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.33380 (9) −0.00046 (5) 0.85069 (6) 0.0253 (2)
O1 0.3626 (2) 0.18832 (13) 1.06649 (16) 0.0320 (6)
N1 0.3843 (3) 0.16539 (15) 0.88513 (19) 0.0211 (6)
C1 0.6646 (3) 0.29768 (18) 0.8312 (2) 0.0241 (7)
H1A 0.6047 0.3262 0.7633 0.029*
C2 0.8123 (4) 0.3003 (2) 0.8566 (3) 0.0296 (8)
H2A 0.8531 0.3314 0.8071 0.035*
C3 0.9005 (4) 0.2575 (2) 0.9542 (3) 0.0309 (8)
H3A 1.0017 0.2574 0.9702 0.037*
C4 0.8401 (4) 0.2147 (2) 1.0284 (3) 0.0310 (8)
H4A 0.9001 0.1868 1.0968 0.037*
C5 0.6923 (3) 0.21282 (19) 1.0028 (2) 0.0257 (7)
H5A 0.6517 0.1830 1.0536 0.031*
C6 0.6026 (3) 0.25385 (18) 0.9040 (2) 0.0211 (7)
C7 0.4415 (3) 0.25215 (19) 0.8761 (2) 0.0243 (7)
H7A 0.4148 0.2919 0.9303 0.029*
H7B 0.3962 0.2743 0.7958 0.029*
C8 0.3482 (3) 0.1418 (2) 0.9806 (2) 0.0251 (7)
C9 0.2885 (3) 0.0507 (2) 0.9689 (2) 0.0264 (7)
H9A 0.1830 0.0522 0.9514 0.032*
H9B 0.3313 0.0180 1.0425 0.032*
C10 0.3402 (3) 0.10667 (19) 0.7831 (2) 0.0210 (7)
C11 0.1909 (3) 0.13109 (19) 0.7013 (2) 0.0227 (7)
H11A 0.1912 0.1928 0.6780 0.027*
H11B 0.1202 0.1248 0.7436 0.027*
C12 0.1448 (3) 0.07408 (18) 0.5916 (2) 0.0212 (7)
H12A 0.0491 0.0928 0.5400 0.025*
H12B 0.1375 0.0128 0.6140 0.025*
C13 0.2545 (3) 0.08156 (19) 0.5260 (2) 0.0213 (7)
H13A 0.2647 0.1449 0.5116 0.026*
C14 0.4012 (3) 0.0504 (2) 0.6074 (2) 0.0242 (7)
H14A 0.3940 −0.0113 0.6284 0.029*
H14B 0.4731 0.0543 0.5661 0.029*
C15 0.4503 (3) 0.10522 (19) 0.7182 (2) 0.0221 (7)
H15A 0.4679 0.1655 0.6975 0.027*
H15B 0.5421 0.0817 0.7707 0.027*
C16 0.2087 (3) 0.0375 (2) 0.4081 (2) 0.0217 (7)
C17 0.2160 (3) −0.05266 (19) 0.3972 (2) 0.0232 (7)
H17A 0.2473 −0.0877 0.4655 0.028*
C18 0.1782 (3) −0.0918 (2) 0.2878 (2) 0.0260 (7)
H18A 0.1843 −0.1532 0.2818 0.031*
C19 0.1316 (3) −0.0417 (2) 0.1874 (2) 0.0277 (7)
H19A 0.1060 −0.0684 0.1127 0.033*
C20 0.1226 (3) 0.0480 (2) 0.1970 (2) 0.0282 (8)
H20A 0.0910 0.0829 0.1286 0.034*
C21 0.1598 (3) 0.0866 (2) 0.3064 (2) 0.0248 (7)
H21A 0.1518 0.1478 0.3120 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0414 (5) 0.0194 (4) 0.0179 (4) −0.0007 (4) 0.0134 (3) 0.0011 (4)
O1 0.0528 (15) 0.0301 (13) 0.0176 (11) −0.0009 (11) 0.0177 (10) −0.0058 (10)
N1 0.0318 (15) 0.0173 (13) 0.0172 (12) −0.0043 (11) 0.0121 (10) −0.0026 (11)
C1 0.041 (2) 0.0168 (16) 0.0145 (14) −0.0017 (14) 0.0096 (14) −0.0039 (13)
C2 0.049 (2) 0.0215 (18) 0.0238 (16) −0.0070 (15) 0.0188 (15) −0.0078 (14)
C3 0.0326 (19) 0.0268 (19) 0.0346 (18) −0.0060 (14) 0.0125 (15) −0.0142 (16)
C4 0.042 (2) 0.0256 (18) 0.0227 (16) 0.0024 (15) 0.0071 (15) −0.0057 (14)
C5 0.041 (2) 0.0177 (17) 0.0195 (16) −0.0028 (14) 0.0112 (14) −0.0019 (14)
C6 0.0362 (19) 0.0131 (15) 0.0161 (14) −0.0020 (13) 0.0111 (13) −0.0019 (13)
C7 0.042 (2) 0.0149 (16) 0.0182 (15) 0.0026 (14) 0.0122 (13) −0.0004 (13)
C8 0.0335 (19) 0.0257 (18) 0.0194 (15) 0.0028 (14) 0.0134 (13) 0.0015 (14)
C9 0.0354 (19) 0.0299 (19) 0.0162 (15) −0.0036 (15) 0.0114 (13) 0.0005 (14)
C10 0.0338 (18) 0.0181 (16) 0.0142 (14) −0.0021 (13) 0.0122 (13) −0.0035 (13)
C11 0.0289 (18) 0.0246 (18) 0.0190 (15) 0.0016 (13) 0.0138 (13) −0.0006 (13)
C12 0.0288 (18) 0.0197 (17) 0.0169 (14) 0.0002 (13) 0.0099 (12) −0.0003 (13)
C13 0.0315 (18) 0.0196 (16) 0.0155 (14) −0.0035 (13) 0.0112 (13) −0.0025 (13)
C14 0.0309 (18) 0.0252 (17) 0.0208 (15) −0.0009 (14) 0.0144 (13) −0.0035 (14)
C15 0.0281 (18) 0.0228 (17) 0.0174 (14) −0.0017 (13) 0.0101 (13) −0.0017 (13)
C16 0.0262 (17) 0.0228 (16) 0.0192 (15) −0.0034 (13) 0.0114 (12) −0.0019 (14)
C17 0.0342 (18) 0.0212 (18) 0.0172 (15) −0.0030 (14) 0.0125 (13) 0.0020 (14)
C18 0.0331 (19) 0.0217 (17) 0.0261 (16) −0.0024 (14) 0.0139 (14) −0.0054 (14)
C19 0.0327 (19) 0.035 (2) 0.0165 (15) −0.0020 (15) 0.0094 (13) −0.0069 (15)
C20 0.037 (2) 0.032 (2) 0.0176 (16) 0.0040 (15) 0.0103 (14) 0.0027 (15)
C21 0.0339 (19) 0.0221 (17) 0.0207 (16) 0.0000 (14) 0.0122 (13) −0.0024 (14)

Geometric parameters (Å, º)

S1—C9 1.808 (3) C11—C12 1.532 (4)
S1—C10 1.849 (3) C11—H11A 0.9900
O1—C8 1.231 (3) C11—H11B 0.9900
N1—C8 1.360 (3) C12—C13 1.534 (4)
N1—C7 1.466 (4) C12—H12A 0.9900
N1—C10 1.476 (3) C12—H12B 0.9900
C1—C2 1.385 (4) C13—C16 1.510 (4)
C1—C6 1.394 (4) C13—C14 1.538 (4)
C1—H1A 0.9500 C13—H13A 1.0000
C2—C3 1.385 (4) C14—C15 1.524 (4)
C2—H2A 0.9500 C14—H14A 0.9900
C3—C4 1.391 (4) C14—H14B 0.9900
C3—H3A 0.9500 C15—H15A 0.9900
C4—C5 1.385 (4) C15—H15B 0.9900
C4—H4A 0.9500 C16—C21 1.390 (4)
C5—C6 1.387 (4) C16—C17 1.397 (4)
C5—H5A 0.9500 C17—C18 1.391 (4)
C6—C7 1.510 (4) C17—H17A 0.9500
C7—H7A 0.9900 C18—C19 1.385 (4)
C7—H7B 0.9900 C18—H18A 0.9500
C8—C9 1.510 (4) C19—C20 1.390 (4)
C9—H9A 0.9900 C19—H19A 0.9500
C9—H9B 0.9900 C20—C21 1.387 (4)
C10—C15 1.527 (4) C20—H20A 0.9500
C10—C11 1.530 (4) C21—H21A 0.9500
C9—S1—C10 90.75 (13) C10—C11—H11B 109.2
C8—N1—C7 121.1 (2) C12—C11—H11B 109.2
C8—N1—C10 117.3 (2) H11A—C11—H11B 107.9
C7—N1—C10 120.8 (2) C11—C12—C13 110.0 (2)
C2—C1—C6 120.9 (3) C11—C12—H12A 109.7
C2—C1—H1A 119.5 C13—C12—H12A 109.7
C6—C1—H1A 119.5 C11—C12—H12B 109.7
C1—C2—C3 120.0 (3) C13—C12—H12B 109.7
C1—C2—H2A 120.0 H12A—C12—H12B 108.2
C3—C2—H2A 120.0 C16—C13—C12 114.0 (2)
C2—C3—C4 119.6 (3) C16—C13—C14 113.4 (2)
C2—C3—H3A 120.2 C12—C13—C14 108.4 (2)
C4—C3—H3A 120.2 C16—C13—H13A 106.8
C5—C4—C3 120.0 (3) C12—C13—H13A 106.8
C5—C4—H4A 120.0 C14—C13—H13A 106.8
C3—C4—H4A 120.0 C15—C14—C13 110.9 (2)
C4—C5—C6 120.9 (3) C15—C14—H14A 109.5
C4—C5—H5A 119.5 C13—C14—H14A 109.5
C6—C5—H5A 119.5 C15—C14—H14B 109.5
C5—C6—C1 118.5 (3) C13—C14—H14B 109.5
C5—C6—C7 121.0 (3) H14A—C14—H14B 108.0
C1—C6—C7 120.5 (3) C14—C15—C10 112.5 (2)
N1—C7—C6 113.5 (2) C14—C15—H15A 109.1
N1—C7—H7A 108.9 C10—C15—H15A 109.1
C6—C7—H7A 108.9 C14—C15—H15B 109.1
N1—C7—H7B 108.9 C10—C15—H15B 109.1
C6—C7—H7B 108.9 H15A—C15—H15B 107.8
H7A—C7—H7B 107.7 C21—C16—C17 118.0 (3)
O1—C8—N1 124.7 (3) C21—C16—C13 120.3 (3)
O1—C8—C9 123.6 (3) C17—C16—C13 121.7 (2)
N1—C8—C9 111.6 (2) C18—C17—C16 120.9 (3)
C8—C9—S1 106.9 (2) C18—C17—H17A 119.6
C8—C9—H9A 110.3 C16—C17—H17A 119.6
S1—C9—H9A 110.3 C19—C18—C17 120.3 (3)
C8—C9—H9B 110.3 C19—C18—H18A 119.9
S1—C9—H9B 110.3 C17—C18—H18A 119.9
H9A—C9—H9B 108.6 C18—C19—C20 119.4 (3)
N1—C10—C15 111.8 (2) C18—C19—H19A 120.3
N1—C10—C11 110.7 (2) C20—C19—H19A 120.3
C15—C10—C11 111.3 (2) C21—C20—C19 120.0 (3)
N1—C10—S1 102.67 (17) C21—C20—H20A 120.0
C15—C10—S1 110.1 (2) C19—C20—H20A 120.0
C11—C10—S1 110.0 (2) C20—C21—C16 121.4 (3)
C10—C11—C12 112.0 (2) C20—C21—H21A 119.3
C10—C11—H11A 109.2 C16—C21—H21A 119.3
C12—C11—H11A 109.2
C6—C1—C2—C3 1.3 (4) C9—S1—C10—C15 148.8 (2)
C1—C2—C3—C4 −2.3 (4) C9—S1—C10—C11 −88.2 (2)
C2—C3—C4—C5 2.0 (4) N1—C10—C11—C12 177.3 (2)
C3—C4—C5—C6 −0.6 (4) C15—C10—C11—C12 52.4 (3)
C4—C5—C6—C1 −0.4 (4) S1—C10—C11—C12 −69.9 (3)
C4—C5—C6—C7 −179.8 (3) C10—C11—C12—C13 −57.8 (3)
C2—C1—C6—C5 0.1 (4) C11—C12—C13—C16 −172.1 (2)
C2—C1—C6—C7 179.4 (3) C11—C12—C13—C14 60.4 (3)
C8—N1—C7—C6 101.0 (3) C16—C13—C14—C15 172.6 (2)
C10—N1—C7—C6 −89.9 (3) C12—C13—C14—C15 −59.6 (3)
C5—C6—C7—N1 −47.5 (3) C13—C14—C15—C10 55.7 (3)
C1—C6—C7—N1 133.2 (3) N1—C10—C15—C14 −175.6 (2)
C7—N1—C8—O1 −1.7 (5) C11—C10—C15—C14 −51.3 (3)
C10—N1—C8—O1 −171.2 (3) S1—C10—C15—C14 71.0 (3)
C7—N1—C8—C9 178.6 (2) C12—C13—C16—C21 104.1 (3)
C10—N1—C8—C9 9.1 (4) C14—C13—C16—C21 −131.1 (3)
O1—C8—C9—S1 −164.6 (3) C12—C13—C16—C17 −77.1 (4)
N1—C8—C9—S1 15.1 (3) C14—C13—C16—C17 47.8 (4)
C10—S1—C9—C8 −26.3 (2) C21—C16—C17—C18 1.2 (4)
C8—N1—C10—C15 −145.8 (3) C13—C16—C17—C18 −177.7 (3)
C7—N1—C10—C15 44.7 (3) C16—C17—C18—C19 −0.4 (4)
C8—N1—C10—C11 89.6 (3) C17—C18—C19—C20 −0.2 (4)
C7—N1—C10—C11 −79.9 (3) C18—C19—C20—C21 −0.2 (4)
C8—N1—C10—S1 −27.8 (3) C19—C20—C21—C16 1.0 (5)
C7—N1—C10—S1 162.7 (2) C17—C16—C21—C20 −1.5 (4)
C9—S1—C10—N1 29.6 (2) C13—C16—C21—C20 177.4 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C17—H17A···Cg1i 0.95 2.72 3.565 (3) 149

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6732).

References

  1. Akkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1572–o1573. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Dandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 551–564.
  7. Kasimogullari, B. O. & Cesur, Z. (2004). Molecules, 9, 894–901. [DOI] [PMC free article] [PubMed]
  8. Sahu, S. K., Mishra, S. K., Banergee, M., Panda, P. K. & Misro, P. K. (2006). J. Indian Chem. Soc. 7, 725–727.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Singh, R., Khaturia, S., Merienne, C., Morgantc, G. & Loupyd, A. (2006). Bioorg. Med. Chem. 14, 2409–2417. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015358/hb6732sup1.cif

e-68-o1438-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015358/hb6732Isup2.hkl

e-68-o1438-Isup2.hkl (173.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015358/hb6732Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES