Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 18;68(Pt 5):o1439–o1440. doi: 10.1107/S1600536812015929

3-(1-Adamant­yl)-4-amino-1-(2-benzoyl-1-phenyl­eth­yl)-1H-1,2,4-triazol-5(4H)-thione

Siham Lahsasni a, Ali A El-Emam b, Nasser R El-Brollosy b, Ching Kheng Quah c,, Hoong-Kun Fun c,*,§
PMCID: PMC3344558  PMID: 22590320

Abstract

In the title compound, C27H30N4OS, the 3-(adamantan-1-yl)-4-amino-1H-1,2,4-triazole-5(4H)-thione unit and the O atom are each disordered over two sets of sites with refined site-occupancies of 0.7630 (13) and 0.2370 (13). The 1,2,4-triazole ring of the major component forms dihedral angles of 62.61 (17) and 61.93 (16)° with the benzene rings, while that of the minor component makes corresponding angles of 86.3 (4) and 79.1 (4)°. The dihedral angle between the benzene rings is 39.21 (16)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯N hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯S hydrogen bonds.

Related literature  

For the biological activity of adamantane derivatives, see: Vernier et al. (1969); Kadi et al. (2007, 2010); Al-Abdullah et al. (2007); El-Emam et al. (2004). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2012); Almutairi et al. (2012); Al-Tamimi et al. (2010). For related amino-1,2,4-triazole structures, see: Song et al. (2011); Gao et al. (2011); Wang et al. (2011). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o1439-scheme1.jpg

Experimental  

Crystal data  

  • C27H30N4OS

  • M r = 458.61

  • Monoclinic, Inline graphic

  • a = 11.9409 (3) Å

  • b = 9.5478 (3) Å

  • c = 22.0034 (6) Å

  • β = 103.610 (2)°

  • V = 2438.15 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.38 mm−1

  • T = 296 K

  • 0.98 × 0.66 × 0.33 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.345, T max = 0.662

  • 18569 measured reflections

  • 4512 independent reflections

  • 3341 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.140

  • S = 1.04

  • 4512 reflections

  • 371 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015929/is5114sup1.cif

e-68-o1439-sup1.cif (44.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015929/is5114Isup2.hkl

e-68-o1439-Isup2.hkl (221.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015929/is5114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯S1i 0.90 2.60 3.475 (3) 166
C4—H4B⋯N4 0.97 2.53 3.177 (4) 124

Symmetry code: (i) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivative were recently reported to exhibit marked antibacterial activity (Kadi et al., 2007, 2010). In continuation to our interest in the reactions of amino-1,2,4-triazoles (Al-Abdullah et al., 2007), we report herein the synthesis and structure of the title compound (I) as potential chemotherapeutic agent.

In the title molecule, Fig. 1, the 3-(adamantan-1-yl)-4-amino-1H-1,2,4-triazole-5(4H)-thione moiety and an oxygen atom are disordered over two positions with refined site-occupancies of 0.763 (1):0.237 (1). The mean plane of major component of 1,2,4-triazole ring (N1-N3/C1/C2, r.m.s deviation = 0.003 Å) forms dihedral angles of 62.61 (17) and 61.93 (16)° with the two benzene rings (C16–C21 and C22–C27). The corresponding angles for minor component of 1,2,4-triazole ring (r.m.s deviation = 0.010 Å) are 86.3 (4) and 79.1 (4)°. The dihedral angle between the two benzene rings is 39.21 (16)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by an intramolecular C4—H4B···N4 hydrogen bond (Table 1), which generates an S(6) ring motif (Fig. 2; Bernstein et al., 1995).

In the crystal (Fig. 3), molecules are linked into inversion dimers by pairs of N4—H1N4···S1 hydrogen bonds (Table 1).

Experimental

A mixture of 3-(1-adamantyl)-4-amino-4H-1,2,4-triazole-5-thiol (2.5 g, 0.01 mol) and (E)-1-(4-phenyl)-3-phenylprop-2-en-1-one (2.08 g, 0.01 mol), in ethanol (15 ml), was heated under reflux for 10 h and the solvent was then distilled off in vacuo. The resulted residue was eluted from silica gel column using hexane:ethyl acetate (4:1) to yield 1.01 g (22%) of the title compound (I) as pale yellow powder. M.p. 191-193°C. Crystals of (I) suitable for single crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1) at room temperature. 1H NMR (CDCl3, 500.13 MHz): δ 1.66 (s, 6H, Adamantane-H), 1.95 (s, 9H, Adamantane-H), 3.45-3.49 (m, 1Ha, CH2CO), 4.23-4.29 (m, 1Hb, CH2CO), 4.51 (s, 2H, NH2), 6.48-6.51 (m, 1H, CH), 7.18-7.27 (m, 3H, Ar-H), 7.36-7.48 (m, 5H, Ar-H), 7.88-7.90 (m, 2H, Ar-H). 13C NMR (CDCl3, 125.76 MHz): δ 27.84, 35.0, 36.42, 38.41 (Adamantane-C), 42.75 (CH), 58.09 (CH2), 127.54, 128.14, 128.24, 128.60, 128.71, 133.30, 136.66, 138.71 (Ar-C), 156.25 (Triazole C-3), 167.55 (C=S), 196.09 (C=O).

Refinement

The 3-(adamantan-1-yl)-4-amino-1H-1,2,4-triazole-5(4H)-thione moiety and the oxygen atom are disordered over two positions with refined site-occupancies of 0.763 (1) : 0.237 (1). All minor disordered components were refined isotropically. All hydrogen atoms were positioned geometrically (N—H = 0.8979 Å and C—H = 0.93–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(N,C). The adamantyl (C3–C12) moiety was subjected to similarity restraints.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. All disorder components are shown.

Fig. 2.

Fig. 2.

The molecular structure of the major component of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 3.

Fig. 3.

Part of the crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.

Crystal data

C27H30N4OS F(000) = 976
Mr = 458.61 Dx = 1.249 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 3061 reflections
a = 11.9409 (3) Å θ = 3.8–67.9°
b = 9.5478 (3) Å µ = 1.38 mm1
c = 22.0034 (6) Å T = 296 K
β = 103.610 (2)° Plate, colourless
V = 2438.15 (12) Å3 0.98 × 0.66 × 0.33 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4512 independent reflections
Radiation source: fine-focus sealed tube 3341 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 69.6°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→13
Tmin = 0.345, Tmax = 0.662 k = −11→11
18569 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.3343P] where P = (Fo2 + 2Fc2)/3
4512 reflections (Δ/σ)max = 0.001
371 parameters Δρmax = 0.17 e Å3
30 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.52127 (8) 0.89181 (9) −0.08864 (4) 0.0666 (3) 0.7630 (13)
O1 0.5192 (2) 0.6892 (3) 0.05575 (12) 0.0788 (7) 0.7630 (13)
N1 0.7014 (2) 0.7645 (2) −0.00707 (12) 0.0514 (6) 0.7630 (13)
N2 0.7971 (2) 0.7977 (2) 0.03974 (12) 0.0524 (6) 0.7630 (13)
N3 0.7028 (2) 0.9862 (2) 0.00087 (11) 0.0506 (6) 0.7630 (13)
N4 0.6719 (2) 1.1284 (2) −0.00704 (13) 0.0632 (7) 0.7630 (13)
H1N4 0.6119 1.1217 0.0110 0.076* 0.7630 (13)
H2N4 0.6665 1.1741 −0.0433 0.076* 0.7630 (13)
C1 0.6410 (3) 0.8782 (3) −0.03184 (14) 0.0517 (7) 0.7630 (13)
C2 0.7961 (2) 0.9338 (3) 0.04378 (14) 0.0485 (7) 0.7630 (13)
C3 0.8827 (3) 1.0177 (3) 0.08935 (15) 0.0498 (7) 0.7630 (13)
C4 0.9397 (3) 1.1307 (3) 0.05715 (15) 0.0600 (8) 0.7630 (13)
H4A 0.9763 1.0871 0.0270 0.072* 0.7630 (13)
H4B 0.8813 1.1948 0.0348 0.072* 0.7630 (13)
C5 1.0292 (4) 1.2118 (4) 0.1049 (2) 0.0706 (11) 0.7630 (13)
H5A 1.0648 1.2828 0.0834 0.085* 0.7630 (13)
C6 0.9684 (9) 1.2830 (7) 0.1497 (5) 0.089 (4) 0.7630 (13)
H6A 0.9094 1.3453 0.1266 0.107* 0.7630 (13)
H6B 1.0234 1.3387 0.1795 0.107* 0.7630 (13)
C7 0.9138 (4) 1.1753 (4) 0.18449 (18) 0.0736 (10) 0.7630 (13)
H7A 0.8757 1.2225 0.2137 0.088* 0.7630 (13)
C8 0.8246 (3) 1.0891 (4) 0.13665 (16) 0.0619 (8) 0.7630 (13)
H8A 0.7905 1.0185 0.1584 0.074* 0.7630 (13)
H8B 0.7635 1.1503 0.1147 0.074* 0.7630 (13)
C9 1.0063 (5) 1.0770 (5) 0.22011 (19) 0.0914 (13) 0.7630 (13)
H9A 0.9717 1.0077 0.2423 0.110* 0.7630 (13)
H9B 1.0625 1.1296 0.2506 0.110* 0.7630 (13)
C10 0.9749 (5) 0.9195 (4) 0.1271 (4) 0.0670 (19) 0.7630 (13)
H10A 1.0118 0.8690 0.0989 0.080* 0.7630 (13)
H10B 0.9389 0.8516 0.1492 0.080* 0.7630 (13)
C11 1.0660 (5) 1.0035 (5) 0.1744 (4) 0.0763 (16) 0.7630 (13)
H11A 1.1256 0.9399 0.1973 0.092* 0.7630 (13)
C12 1.1208 (3) 1.1131 (5) 0.1397 (2) 0.0857 (12) 0.7630 (13)
H12A 1.1788 1.1653 0.1693 0.103* 0.7630 (13)
H12B 1.1581 1.0670 0.1104 0.103* 0.7630 (13)
S1A 0.4172 (2) 0.8775 (3) 0.06445 (13) 0.0634 (8)* 0.2370 (13)
O1A 0.5678 (6) 0.6617 (8) −0.0404 (3) 0.0661 (19)* 0.2370 (13)
N1A 0.6323 (6) 0.7602 (8) 0.0891 (4) 0.0496 (18)* 0.2370 (13)
N2A 0.7482 (6) 0.7939 (8) 0.1048 (4) 0.0496 (18)* 0.2370 (13)
N3A 0.6374 (6) 0.9813 (8) 0.0936 (3) 0.0494 (18)* 0.2370 (13)
N4A 0.6033 (7) 1.1229 (8) 0.0904 (4) 0.058 (2)* 0.2370 (13)
H3N4 0.5613 1.1566 0.0540 0.069* 0.2370 (13)
H4N4 0.5394 1.1375 0.1043 0.069* 0.2370 (13)
C1A 0.5601 (8) 0.8693 (10) 0.0806 (4) 0.050 (2)* 0.2370 (13)
C2A 0.7469 (8) 0.9328 (9) 0.1069 (4) 0.049 (2)* 0.2370 (13)
C3A 0.8582 (8) 1.0163 (10) 0.1242 (5) 0.046 (2)* 0.2370 (13)
C4A 0.8573 (9) 1.0991 (12) 0.1852 (5) 0.060 (3)* 0.2370 (13)
H4AA 0.7929 1.1638 0.1778 0.072* 0.2370 (13)
H4AB 0.8492 1.0347 0.2180 0.072* 0.2370 (13)
C5A 0.9693 (11) 1.1783 (15) 0.2048 (7) 0.071 (4)* 0.2370 (13)
H5AA 0.9696 1.2288 0.2436 0.086* 0.2370 (13)
C6A 0.9765 (19) 1.2860 (16) 0.1539 (10) 0.048 (6)* 0.2370 (13)
H6AA 0.9095 1.3466 0.1462 0.058* 0.2370 (13)
H6AB 1.0447 1.3436 0.1675 0.058* 0.2370 (13)
C7A 0.9818 (10) 1.2081 (15) 0.0943 (7) 0.061 (4)* 0.2370 (13)
H7AA 0.9876 1.2755 0.0616 0.074* 0.2370 (13)
C8A 0.8709 (10) 1.1192 (12) 0.0728 (5) 0.067 (3)* 0.2370 (13)
H8AA 0.8043 1.1804 0.0628 0.080* 0.2370 (13)
H8AB 0.8742 1.0676 0.0352 0.080* 0.2370 (13)
C9A 1.0848 (12) 1.1107 (16) 0.1064 (7) 0.083 (4)* 0.2370 (13)
H9AA 1.1551 1.1645 0.1203 0.099* 0.2370 (13)
H9AB 1.0884 1.0630 0.0680 0.099* 0.2370 (13)
C10A 0.9617 (16) 0.919 (2) 0.1325 (18) 0.111 (13)* 0.2370 (13)
H10C 0.9623 0.8750 0.0929 0.133* 0.2370 (13)
H10D 0.9560 0.8462 0.1623 0.133* 0.2370 (13)
C11A 1.0752 (17) 1.003 (2) 0.1563 (8) 0.070 (7)* 0.2370 (13)
H11B 1.1415 0.9391 0.1638 0.084* 0.2370 (13)
C12A 1.0707 (12) 1.0799 (15) 0.2168 (6) 0.076 (4)* 0.2370 (13)
H12C 1.0638 1.0127 0.2487 0.091* 0.2370 (13)
H12D 1.1414 1.1324 0.2317 0.091* 0.2370 (13)
C13 0.6623 (2) 0.6114 (3) −0.01934 (12) 0.0623 (6)
H13A 0.5809 0.6117 −0.0416 0.075* 0.7630 (13)
C14 0.6717 (2) 0.5413 (2) 0.04345 (11) 0.0569 (6)
H14A 0.6518 0.4431 0.0367 0.068*
H14B 0.7510 0.5465 0.0674 0.068*
C15 0.5944 (2) 0.6070 (2) 0.08101 (12) 0.0579 (6)
H15A 0.5136 0.6009 0.0580 0.069* 0.2370 (13)
C16 0.6068 (2) 0.5602 (3) 0.14704 (12) 0.0580 (6)
C17 0.6457 (2) 0.4278 (3) 0.16673 (13) 0.0662 (7)
H17A 0.6713 0.3675 0.1397 0.079*
C18 0.6462 (3) 0.3853 (4) 0.22695 (15) 0.0832 (9)
H18A 0.6705 0.2952 0.2397 0.100*
C19 0.6121 (3) 0.4727 (5) 0.26767 (15) 0.0919 (10)
H19A 0.6145 0.4432 0.3082 0.110*
C20 0.5742 (3) 0.6041 (4) 0.24904 (16) 0.0988 (11)
H20A 0.5509 0.6642 0.2770 0.119*
C21 0.5702 (3) 0.6486 (3) 0.18866 (15) 0.0837 (9)
H21A 0.5429 0.7377 0.1760 0.100*
C22 0.7301 (2) 0.5415 (2) −0.06068 (12) 0.0600 (6)
C23 0.6899 (2) 0.5500 (3) −0.12483 (13) 0.0745 (8)
H23A 0.6229 0.6000 −0.1417 0.089*
C24 0.7487 (3) 0.4843 (4) −0.16410 (15) 0.0911 (10)
H24A 0.7208 0.4900 −0.2072 0.109*
C25 0.8477 (3) 0.4111 (3) −0.13989 (17) 0.0886 (9)
H25A 0.8864 0.3663 −0.1664 0.106*
C26 0.8892 (3) 0.4041 (3) −0.07700 (17) 0.0907 (10)
H26A 0.9571 0.3557 −0.0605 0.109*
C27 0.8312 (3) 0.4684 (3) −0.03757 (14) 0.0814 (8)
H27B 0.8606 0.4627 0.0054 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0676 (5) 0.0682 (5) 0.0566 (5) 0.0009 (4) −0.0002 (4) 0.0033 (4)
O1 0.0770 (15) 0.0821 (16) 0.0802 (16) 0.0303 (14) 0.0244 (13) 0.0188 (14)
N1 0.0547 (13) 0.0405 (12) 0.0571 (14) −0.0021 (10) 0.0095 (12) −0.0025 (11)
N2 0.0521 (13) 0.0414 (13) 0.0613 (15) 0.0027 (10) 0.0083 (12) 0.0001 (11)
N3 0.0565 (14) 0.0391 (12) 0.0541 (14) 0.0057 (10) 0.0087 (12) 0.0009 (11)
N4 0.0701 (16) 0.0409 (13) 0.0739 (18) 0.0090 (12) 0.0078 (14) 0.0095 (12)
C1 0.0547 (16) 0.0493 (16) 0.0510 (16) 0.0035 (13) 0.0124 (13) 0.0017 (14)
C2 0.0515 (15) 0.0411 (15) 0.0538 (17) 0.0041 (12) 0.0141 (13) −0.0011 (12)
C3 0.0520 (16) 0.0426 (16) 0.0537 (18) 0.0045 (12) 0.0100 (14) 0.0000 (13)
C4 0.0642 (19) 0.0578 (18) 0.0619 (19) −0.0034 (15) 0.0228 (17) −0.0013 (16)
C5 0.067 (3) 0.065 (2) 0.078 (3) −0.013 (2) 0.013 (2) 0.0013 (19)
C6 0.099 (5) 0.058 (3) 0.103 (5) −0.010 (2) 0.008 (3) −0.017 (2)
C7 0.086 (3) 0.077 (3) 0.058 (2) 0.005 (2) 0.016 (2) −0.0122 (19)
C8 0.068 (2) 0.063 (2) 0.058 (2) 0.0005 (17) 0.0218 (17) −0.0007 (16)
C9 0.108 (4) 0.097 (4) 0.060 (2) −0.011 (3) 0.000 (2) 0.002 (2)
C10 0.056 (2) 0.041 (2) 0.090 (4) 0.0084 (14) −0.009 (2) −0.0022 (16)
C11 0.058 (3) 0.065 (3) 0.091 (5) 0.0053 (17) −0.014 (3) 0.004 (3)
C12 0.062 (2) 0.082 (3) 0.106 (4) −0.002 (2) 0.005 (2) −0.013 (3)
C13 0.0650 (14) 0.0609 (14) 0.0593 (14) 0.0091 (12) 0.0114 (12) −0.0032 (12)
C14 0.0601 (13) 0.0457 (12) 0.0648 (14) 0.0013 (10) 0.0148 (12) −0.0034 (11)
C15 0.0566 (13) 0.0487 (12) 0.0684 (15) 0.0003 (11) 0.0148 (12) 0.0010 (11)
C16 0.0515 (12) 0.0600 (14) 0.0624 (14) −0.0037 (11) 0.0133 (11) −0.0042 (12)
C17 0.0625 (15) 0.0697 (16) 0.0674 (16) 0.0046 (12) 0.0174 (13) 0.0077 (13)
C18 0.0720 (17) 0.096 (2) 0.080 (2) 0.0040 (16) 0.0148 (16) 0.0204 (18)
C19 0.0706 (18) 0.141 (3) 0.0634 (18) −0.003 (2) 0.0134 (15) 0.005 (2)
C20 0.102 (2) 0.125 (3) 0.074 (2) −0.002 (2) 0.0295 (19) −0.026 (2)
C21 0.094 (2) 0.0781 (19) 0.084 (2) 0.0046 (16) 0.0306 (18) −0.0135 (16)
C22 0.0697 (15) 0.0491 (13) 0.0631 (15) −0.0009 (11) 0.0192 (13) −0.0049 (11)
C23 0.0679 (16) 0.088 (2) 0.0664 (17) −0.0045 (15) 0.0134 (14) −0.0070 (15)
C24 0.102 (2) 0.110 (3) 0.0661 (18) −0.016 (2) 0.0285 (18) −0.0176 (18)
C25 0.117 (3) 0.0713 (19) 0.091 (2) 0.0007 (18) 0.051 (2) −0.0122 (17)
C26 0.114 (3) 0.0713 (18) 0.098 (2) 0.0306 (18) 0.048 (2) 0.0051 (17)
C27 0.102 (2) 0.0725 (18) 0.0740 (18) 0.0263 (17) 0.0294 (17) 0.0056 (15)

Geometric parameters (Å, º)

S1—C1 1.668 (3) C4A—C5A 1.509 (13)
O1—C15 1.223 (3) C4A—H4AA 0.9700
N1—C1 1.345 (4) C4A—H4AB 0.9700
N1—N2 1.383 (3) C5A—C12A 1.507 (15)
N1—C13 1.539 (3) C5A—C6A 1.54 (2)
N2—C2 1.303 (4) C5A—H5AA 0.9800
N3—C1 1.370 (4) C6A—C7A 1.522 (19)
N3—C2 1.373 (4) C6A—H6AA 0.9700
N3—N4 1.407 (3) C6A—H6AB 0.9700
N4—H1N4 0.8979 C7A—C9A 1.515 (15)
N4—H2N4 0.8979 C7A—C8A 1.551 (13)
C2—C3 1.493 (4) C7A—H7AA 0.9800
C3—C10 1.532 (5) C8A—H8AA 0.9700
C3—C4 1.535 (4) C8A—H8AB 0.9700
C3—C8 1.539 (4) C9A—C11A 1.530 (18)
C4—C5 1.522 (5) C9A—H9AA 0.9700
C4—H4A 0.9700 C9A—H9AB 0.9700
C4—H4B 0.9700 C10A—C11A 1.554 (16)
C5—C12 1.509 (6) C10A—H10C 0.9700
C5—C6 1.517 (11) C10A—H10D 0.9700
C5—H5A 0.9800 C11A—C12A 1.532 (18)
C6—C7 1.517 (10) C11A—H11B 0.9800
C6—H6A 0.9700 C12A—H12C 0.9700
C6—H6B 0.9700 C12A—H12D 0.9700
C7—C9 1.518 (6) C13—C22 1.509 (3)
C7—C8 1.547 (6) C13—C14 1.516 (3)
C7—H7A 0.9800 C13—H13A 0.9800
C8—H8A 0.9700 C14—C15 1.513 (3)
C8—H8B 0.9700 C14—H14A 0.9700
C9—C11 1.534 (10) C14—H14B 0.9700
C9—H9A 0.9700 C15—C16 1.494 (3)
C9—H9B 0.9700 C15—H15A 0.9800
C10—C11 1.542 (6) C16—C17 1.381 (3)
C10—H10A 0.9700 C16—C21 1.390 (4)
C10—H10B 0.9700 C17—C18 1.384 (4)
C11—C12 1.530 (8) C17—H17A 0.9300
C11—H11A 0.9800 C18—C19 1.356 (5)
C12—H12A 0.9700 C18—H18A 0.9300
C12—H12B 0.9700 C19—C20 1.364 (5)
S1A—C1A 1.660 (9) C19—H19A 0.9300
O1A—C13 1.213 (7) C20—C21 1.385 (5)
N1A—C1A 1.337 (11) C20—H20A 0.9300
N1A—N2A 1.383 (10) C21—H21A 0.9300
N1A—C15 1.529 (8) C22—C23 1.382 (4)
N2A—C2A 1.327 (11) C22—C27 1.383 (4)
N3A—C2A 1.353 (11) C23—C24 1.386 (4)
N3A—C1A 1.398 (11) C23—H23A 0.9300
N3A—N4A 1.409 (11) C24—C25 1.368 (5)
N4A—H3N4 0.8979 C24—H24A 0.9300
N4A—H4N4 0.8979 C25—C26 1.357 (4)
C2A—C3A 1.519 (13) C25—H25A 0.9300
C3A—C10A 1.521 (16) C26—C27 1.375 (4)
C3A—C8A 1.532 (12) C26—H26A 0.9300
C3A—C4A 1.561 (12) C27—H27B 0.9300
C1—N1—N2 112.8 (2) C12A—C5A—H5AA 108.5
C1—N1—C13 125.7 (2) C4A—C5A—H5AA 108.5
N2—N1—C13 120.7 (2) C6A—C5A—H5AA 108.5
C2—N2—N1 105.1 (2) C7A—C6A—C5A 108.8 (11)
C1—N3—C2 109.7 (2) C7A—C6A—H6AA 109.9
C1—N3—N4 124.6 (2) C5A—C6A—H6AA 109.9
C2—N3—N4 125.7 (2) C7A—C6A—H6AB 109.9
N3—N4—H1N4 95.2 C5A—C6A—H6AB 109.9
N3—N4—H2N4 122.7 H6AA—C6A—H6AB 108.3
H1N4—N4—H2N4 121.9 C9A—C7A—C6A 110.2 (12)
N1—C1—N3 102.9 (2) C9A—C7A—C8A 108.5 (11)
N1—C1—S1 130.5 (2) C6A—C7A—C8A 109.0 (12)
N3—C1—S1 126.6 (2) C9A—C7A—H7AA 109.7
N2—C2—N3 109.6 (3) C6A—C7A—H7AA 109.7
N2—C2—C3 124.4 (3) C8A—C7A—H7AA 109.7
N3—C2—C3 126.0 (2) C3A—C8A—C7A 110.5 (9)
C2—C3—C10 109.4 (3) C3A—C8A—H8AA 109.5
C2—C3—C4 112.3 (3) C7A—C8A—H8AA 109.5
C10—C3—C4 109.9 (4) C3A—C8A—H8AB 109.5
C2—C3—C8 109.9 (2) C7A—C8A—H8AB 109.5
C10—C3—C8 106.6 (5) H8AA—C8A—H8AB 108.1
C4—C3—C8 108.7 (2) C7A—C9A—C11A 110.2 (12)
C5—C4—C3 110.7 (3) C7A—C9A—H9AA 109.6
C5—C4—H4A 109.5 C11A—C9A—H9AA 109.6
C3—C4—H4A 109.5 C7A—C9A—H9AB 109.6
C5—C4—H4B 109.5 C11A—C9A—H9AB 109.6
C3—C4—H4B 109.5 H9AA—C9A—H9AB 108.1
H4A—C4—H4B 108.1 C3A—C10A—C11A 110.3 (14)
C12—C5—C6 110.5 (5) C3A—C10A—H10C 109.6
C12—C5—C4 109.9 (3) C11A—C10A—H10C 109.6
C6—C5—C4 108.2 (5) C3A—C10A—H10D 109.6
C12—C5—H5A 109.4 C11A—C10A—H10D 109.6
C6—C5—H5A 109.4 H10C—C10A—H10D 108.1
C4—C5—H5A 109.4 C9A—C11A—C12A 108.9 (13)
C5—C6—C7 110.6 (4) C9A—C11A—C10A 108.1 (17)
C5—C6—H6A 109.5 C12A—C11A—C10A 109.5 (18)
C7—C6—H6A 109.5 C9A—C11A—H11B 110.1
C5—C6—H6B 109.5 C12A—C11A—H11B 110.1
C7—C6—H6B 109.5 C10A—C11A—H11B 110.1
H6A—C6—H6B 108.1 C5A—C12A—C11A 109.8 (12)
C6—C7—C9 109.4 (5) C5A—C12A—H12C 109.7
C6—C7—C8 109.1 (4) C11A—C12A—H12C 109.7
C9—C7—C8 108.8 (3) C5A—C12A—H12D 109.7
C6—C7—H7A 109.8 C11A—C12A—H12D 109.7
C9—C7—H7A 109.8 H12C—C12A—H12D 108.2
C8—C7—H7A 109.8 O1A—C13—C22 121.9 (4)
C3—C8—C7 110.3 (3) O1A—C13—C14 112.7 (4)
C3—C8—H8A 109.6 C22—C13—C14 114.8 (2)
C7—C8—H8A 109.6 O1A—C13—N1 84.7 (4)
C3—C8—H8B 109.6 C22—C13—N1 110.0 (2)
C7—C8—H8B 109.6 C14—C13—N1 107.8 (2)
H8A—C8—H8B 108.1 O1A—C13—H13A 23.7
C7—C9—C11 109.7 (4) C22—C13—H13A 108.0
C7—C9—H9A 109.7 C14—C13—H13A 108.0
C11—C9—H9A 109.7 N1—C13—H13A 108.0
C7—C9—H9B 109.7 C15—C14—C13 113.0 (2)
C11—C9—H9B 109.7 C15—C14—H14A 109.0
H9A—C9—H9B 108.2 C13—C14—H14A 109.0
C3—C10—C11 110.5 (3) C15—C14—H14B 109.0
C3—C10—H10A 109.5 C13—C14—H14B 109.0
C11—C10—H10A 109.5 H14A—C14—H14B 107.8
C3—C10—H10B 109.5 O1—C15—C16 121.9 (2)
C11—C10—H10B 109.5 O1—C15—C14 119.7 (2)
H10A—C10—H10B 108.1 C16—C15—C14 118.3 (2)
C12—C11—C9 109.5 (4) O1—C15—N1A 66.7 (3)
C12—C11—C10 109.6 (7) C16—C15—N1A 102.4 (3)
C9—C11—C10 108.5 (5) C14—C15—N1A 105.0 (3)
C12—C11—H11A 109.7 O1—C15—H15A 43.6
C9—C11—H11A 109.7 C16—C15—H15A 110.2
C10—C11—H11A 109.7 C14—C15—H15A 110.2
C5—C12—C11 109.6 (3) N1A—C15—H15A 110.2
C5—C12—H12A 109.7 C17—C16—C21 119.0 (3)
C11—C12—H12A 109.7 C17—C16—C15 121.9 (2)
C5—C12—H12B 109.7 C21—C16—C15 119.0 (2)
C11—C12—H12B 109.7 C16—C17—C18 119.6 (3)
H12A—C12—H12B 108.2 C16—C17—H17A 120.2
C1A—N1A—N2A 115.4 (7) C18—C17—H17A 120.2
C1A—N1A—C15 124.4 (7) C19—C18—C17 121.2 (3)
N2A—N1A—C15 120.2 (6) C19—C18—H18A 119.4
C2A—N2A—N1A 102.8 (7) C17—C18—H18A 119.4
C2A—N3A—C1A 109.9 (7) C18—C19—C20 119.9 (3)
C2A—N3A—N4A 126.3 (8) C18—C19—H19A 120.1
C1A—N3A—N4A 123.7 (7) C20—C19—H19A 120.1
N3A—N4A—H3N4 118.9 C19—C20—C21 120.3 (3)
N3A—N4A—H4N4 112.9 C19—C20—H20A 119.8
H3N4—N4A—H4N4 84.7 C21—C20—H20A 119.8
N1A—C1A—N3A 101.2 (7) C20—C21—C16 120.0 (3)
N1A—C1A—S1A 131.6 (7) C20—C21—H21A 120.0
N3A—C1A—S1A 127.1 (7) C16—C21—H21A 120.0
N2A—C2A—N3A 110.7 (8) C23—C22—C27 118.0 (3)
N2A—C2A—C3A 121.1 (8) C23—C22—C13 118.9 (2)
N3A—C2A—C3A 128.2 (8) C27—C22—C13 123.2 (2)
C2A—C3A—C10A 110.3 (11) C22—C23—C24 120.3 (3)
C2A—C3A—C8A 112.6 (8) C22—C23—H23A 119.8
C10A—C3A—C8A 105.1 (16) C24—C23—H23A 119.8
C2A—C3A—C4A 107.4 (9) C25—C24—C23 120.4 (3)
C10A—C3A—C4A 112.0 (14) C25—C24—H24A 119.8
C8A—C3A—C4A 109.5 (8) C23—C24—H24A 119.8
C5A—C4A—C3A 108.3 (9) C26—C25—C24 119.8 (3)
C5A—C4A—H4AA 110.0 C26—C25—H25A 120.1
C3A—C4A—H4AA 110.0 C24—C25—H25A 120.1
C5A—C4A—H4AB 110.0 C25—C26—C27 120.3 (3)
C3A—C4A—H4AB 110.0 C25—C26—H26A 119.9
H4AA—C4A—H4AB 108.4 C27—C26—H26A 119.9
C12A—C5A—C4A 111.1 (11) C26—C27—C22 121.2 (3)
C12A—C5A—C6A 111.3 (12) C26—C27—H27B 119.4
C4A—C5A—C6A 109.0 (12) C22—C27—H27B 119.4
C1—N1—N2—C2 −0.2 (3) C10A—C3A—C4A—C5A 56.4 (16)
C13—N1—N2—C2 −170.9 (2) C8A—C3A—C4A—C5A −59.8 (11)
N2—N1—C1—N3 0.5 (3) C3A—C4A—C5A—C12A −59.7 (13)
C13—N1—C1—N3 170.5 (2) C3A—C4A—C5A—C6A 63.2 (13)
N2—N1—C1—S1 179.8 (2) C12A—C5A—C6A—C7A 58.1 (17)
C13—N1—C1—S1 −10.1 (5) C4A—C5A—C6A—C7A −64.7 (16)
C2—N3—C1—N1 −0.5 (3) C5A—C6A—C7A—C9A −58.3 (17)
N4—N3—C1—N1 −178.1 (3) C5A—C6A—C7A—C8A 60.7 (16)
C2—N3—C1—S1 −179.9 (2) C2A—C3A—C8A—C7A 176.5 (10)
N4—N3—C1—S1 2.5 (4) C10A—C3A—C8A—C7A −63.3 (14)
N1—N2—C2—N3 −0.1 (3) C4A—C3A—C8A—C7A 57.1 (12)
N1—N2—C2—C3 178.8 (3) C9A—C7A—C8A—C3A 62.0 (13)
C1—N3—C2—N2 0.4 (3) C6A—C7A—C8A—C3A −58.0 (14)
N4—N3—C2—N2 178.0 (3) C6A—C7A—C9A—C11A 60.5 (16)
C1—N3—C2—C3 −178.5 (3) C8A—C7A—C9A—C11A −58.8 (15)
N4—N3—C2—C3 −0.9 (5) C2A—C3A—C10A—C11A −174.6 (18)
N2—C2—C3—C10 3.2 (6) C8A—C3A—C10A—C11A 64 (2)
N3—C2—C3—C10 −178.1 (5) C4A—C3A—C10A—C11A −55 (3)
N2—C2—C3—C4 125.5 (3) C7A—C9A—C11A—C12A −59.8 (17)
N3—C2—C3—C4 −55.8 (4) C7A—C9A—C11A—C10A 59.1 (18)
N2—C2—C3—C8 −113.4 (3) C3A—C10A—C11A—C9A −63 (3)
N3—C2—C3—C8 65.3 (4) C3A—C10A—C11A—C12A 56 (3)
C2—C3—C4—C5 −178.8 (3) C4A—C5A—C12A—C11A 62.8 (15)
C10—C3—C4—C5 −56.8 (5) C6A—C5A—C12A—C11A −58.8 (16)
C8—C3—C4—C5 59.5 (4) C9A—C11A—C12A—C5A 58.7 (17)
C3—C4—C5—C12 59.5 (4) C10A—C11A—C12A—C5A −59.2 (17)
C3—C4—C5—C6 −61.2 (5) C1—N1—C13—O1A −14.9 (5)
C12—C5—C6—C7 −58.6 (7) N2—N1—C13—O1A 154.5 (4)
C4—C5—C6—C7 61.7 (7) C1—N1—C13—C22 107.2 (3)
C5—C6—C7—C9 58.6 (7) N2—N1—C13—C22 −83.5 (3)
C5—C6—C7—C8 −60.3 (7) C1—N1—C13—C14 −127.0 (3)
C2—C3—C8—C7 179.5 (3) N2—N1—C13—C14 42.3 (3)
C10—C3—C8—C7 61.1 (4) O1A—C13—C14—C15 −29.6 (5)
C4—C3—C8—C7 −57.3 (4) C22—C13—C14—C15 −175.0 (2)
C6—C7—C8—C3 58.0 (5) N1—C13—C14—C15 62.1 (3)
C9—C7—C8—C3 −61.3 (4) C13—C14—C15—O1 12.7 (3)
C6—C7—C9—C11 −59.2 (6) C13—C14—C15—C16 −172.1 (2)
C8—C7—C9—C11 59.9 (5) C13—C14—C15—N1A −58.7 (4)
C2—C3—C10—C11 179.7 (6) C1A—N1A—C15—O1 18.2 (7)
C4—C3—C10—C11 56.0 (8) N2A—N1A—C15—O1 −160.4 (8)
C8—C3—C10—C11 −61.6 (8) C1A—N1A—C15—C16 −101.5 (8)
C7—C9—C11—C12 59.6 (5) N2A—N1A—C15—C16 80.0 (7)
C7—C9—C11—C10 −60.0 (6) C1A—N1A—C15—C14 134.4 (8)
C3—C10—C11—C12 −57.8 (8) N2A—N1A—C15—C14 −44.1 (7)
C3—C10—C11—C9 61.7 (8) O1—C15—C16—C17 147.4 (3)
C6—C5—C12—C11 58.4 (6) C14—C15—C16—C17 −27.7 (3)
C4—C5—C12—C11 −60.9 (5) N1A—C15—C16—C17 −142.5 (4)
C9—C11—C12—C5 −58.9 (5) O1—C15—C16—C21 −27.7 (4)
C10—C11—C12—C5 60.0 (6) C14—C15—C16—C21 157.1 (2)
C1A—N1A—N2A—C2A 0.7 (10) N1A—C15—C16—C21 42.4 (4)
C15—N1A—N2A—C2A 179.4 (7) C21—C16—C17—C18 0.7 (4)
N2A—N1A—C1A—N3A −1.4 (10) C15—C16—C17—C18 −174.5 (2)
C15—N1A—C1A—N3A 179.9 (6) C16—C17—C18—C19 −1.7 (4)
N2A—N1A—C1A—S1A −177.2 (7) C17—C18—C19—C20 1.3 (5)
C15—N1A—C1A—S1A 4.2 (14) C18—C19—C20—C21 0.1 (5)
C2A—N3A—C1A—N1A 1.6 (10) C19—C20—C21—C16 −1.2 (5)
N4A—N3A—C1A—N1A 179.1 (8) C17—C16—C21—C20 0.7 (4)
C2A—N3A—C1A—S1A 177.6 (7) C15—C16—C21—C20 176.0 (3)
N4A—N3A—C1A—S1A −4.9 (13) O1A—C13—C22—C23 8.0 (6)
N1A—N2A—C2A—N3A 0.4 (10) C14—C13—C22—C23 149.9 (2)
N1A—N2A—C2A—C3A 178.7 (8) N1—C13—C22—C23 −88.4 (3)
C1A—N3A—C2A—N2A −1.3 (11) O1A—C13—C22—C27 −171.8 (5)
N4A—N3A—C2A—N2A −178.7 (8) C14—C13—C22—C27 −30.0 (4)
C1A—N3A—C2A—C3A −179.5 (9) N1—C13—C22—C27 91.8 (3)
N4A—N3A—C2A—C3A 3.1 (15) C27—C22—C23—C24 1.3 (4)
N2A—C2A—C3A—C10A 4 (2) C13—C22—C23—C24 −178.6 (3)
N3A—C2A—C3A—C10A −177.6 (18) C22—C23—C24—C25 −0.4 (5)
N2A—C2A—C3A—C8A 121.5 (10) C23—C24—C25—C26 −0.8 (5)
N3A—C2A—C3A—C8A −60.5 (14) C24—C25—C26—C27 1.0 (5)
N2A—C2A—C3A—C4A −118.0 (10) C25—C26—C27—C22 −0.1 (5)
N3A—C2A—C3A—C4A 60.1 (12) C23—C22—C27—C26 −1.0 (4)
C2A—C3A—C4A—C5A 177.7 (9) C13—C22—C27—C26 178.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H1N4···S1i 0.90 2.60 3.475 (3) 166
C4—H4B···N4 0.97 2.53 3.177 (4) 124

Symmetry code: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5114).

References

  1. Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345. [DOI] [PMC free article] [PubMed]
  2. Al-Abdullah, E. S., Shehata, I. A., Al-Deeb, O. A. & El-Emam, A. A. (2007). Heterocycles 71, 379–388.
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. [DOI] [PMC free article] [PubMed]
  5. Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756. [DOI] [PMC free article] [PubMed]
  6. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  7. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
  9. Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794. [DOI] [PMC free article] [PubMed]
  10. Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. [DOI] [PubMed]
  11. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem 42, 235–242. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Song, X., Ye, L. & Wang, H. (2011). Acta Cryst. E67, o347. [DOI] [PMC free article] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665. [DOI] [PubMed]
  16. Wang, W., Gao, Y., Xiao, Z., Yao, H. & Zhang, J. (2011). Acta Cryst. E67, o348. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812015929/is5114sup1.cif

e-68-o1439-sup1.cif (44.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015929/is5114Isup2.hkl

e-68-o1439-Isup2.hkl (221.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812015929/is5114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES