Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1443. doi: 10.1107/S160053681201522X

2,3-Bis(thio­phen-2-yl)pyrazine­[2,3-f][1,10]phenanthroline

Chang-Ge Zheng a,*, Jun Kong a, Peng Zhang a, Wen-Xian Dong a
PMCID: PMC3344560  PMID: 22590322

Abstract

The mol­ecule of the title compound, C22H12N4S2, shows no crystallographic symmetry. The thiophene rings form different dihedral angles [40.15 (9) and 15.43 (10)°] with the pyrazine ring. A strong π–π stacking inter­action occurs between adjacent pyrazine­[2,3-f][1,10]phenanthroline units with an inter­planar distance of 3.4352 (16) Å.

Related literature  

For the structure of 2,3-dithienyl­pyrazine­[2,3-f]-1,10-phenanthroline, see: Chen & Li (2004). For the properties of 2,3-dithienyl­pyrazine­[2,3-f]-1,10-phenanthroline, see: Armaroli et al. (1992); Aragoni et al. (2002); Bencini et al. (1999).graphic file with name e-68-o1443-scheme1.jpg

Experimental  

Crystal data  

  • C22H12N4S2

  • M r = 396.48

  • Monoclinic, Inline graphic

  • a = 27.016 (5) Å

  • b = 10.267 (2) Å

  • c = 13.835 (3) Å

  • β = 117.04 (3)°

  • V = 3418.1 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.10 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.763, T max = 1.000

  • 9577 measured reflections

  • 3867 independent reflections

  • 3057 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.130

  • S = 1.14

  • 3867 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201522X/aa2049sup1.cif

e-68-o1443-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201522X/aa2049Isup2.hkl

e-68-o1443-Isup2.hkl (189.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

supplementary crystallographic information

Comment

2,3-Dithienylpyrazine[2,3-f]-1,10-phenanthroline as a ligand is widely used as analytical probes, such as proton, ion sensors and organic light-emitting devices (Armaroli et al., 1992; Aragoni et al., 2002; Bencini et al., 1999; Chen & Li, 2004), due to its rigid structure and fluorescence property.

The molecule of the title compound, C22H12N4S2, is chemically symmetric but it shows no crystallographic symmetry. The dihedral angles between thiophene rings and pyrazine ring are 40.15 (9)° and 15.43 (10)°, respectively. The strong π-π stacking occurs in the crystal structure between parallel pyrazine[2,3-f]-1,10-phenanthroline molecules, the interplanar distance is 3.4352 (16) Å.

Experimental

The title compound was synthesized by using 1,10-phenanthroline as the starting material according to the published route (Chen & Li, 2004). The single crystals were obtained by recrystallization from the mixture of methanol and methylene chloride at room temperature.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distance of 0.93 Å, and with Uiso(H)=1.2Uiso(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C22H12N4S2 F(000) = 1632
Mr = 396.48 Dx = 1.541 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 7427 reflections
a = 27.016 (5) Å θ = 3.0–27.5°
b = 10.267 (2) Å µ = 0.33 mm1
c = 13.835 (3) Å T = 293 K
β = 117.04 (3)° Block, yellow
V = 3418.1 (15) Å3 0.30 × 0.30 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3867 independent reflections
Radiation source: fine-focus sealed tube 3057 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 3.1°
phi and ω scans h = −34→34
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −13→11
Tmin = 0.763, Tmax = 1.000 l = −17→15
9577 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.3889P] where P = (Fo2 + 2Fc2)/3
3867 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20867 (3) 0.16082 (6) 0.37184 (6) 0.0384 (2)
S2 0.10144 (3) −0.41137 (6) 0.25638 (6) 0.0385 (2)
C13 −0.00055 (10) 0.1677 (2) 0.12409 (19) 0.0261 (5)
C16 −0.04190 (9) −0.0932 (2) 0.07706 (18) 0.0253 (5)
N4 −0.09519 (9) 0.2440 (2) 0.02141 (17) 0.0345 (5)
C11 0.03747 (9) 0.0587 (2) 0.16463 (18) 0.0245 (5)
C12 0.01743 (9) −0.0683 (2) 0.14262 (18) 0.0245 (5)
N1 0.09256 (8) 0.08207 (19) 0.21974 (15) 0.0259 (4)
C9 0.10654 (9) −0.1492 (2) 0.24045 (18) 0.0243 (5)
N2 0.05183 (8) −0.17051 (19) 0.18208 (15) 0.0260 (4)
N3 −0.13437 (8) −0.0055 (2) −0.02387 (16) 0.0318 (5)
C15 −0.07901 (9) 0.0118 (2) 0.03844 (18) 0.0264 (5)
C14 −0.05811 (10) 0.1460 (2) 0.06220 (18) 0.0274 (5)
C10 0.12755 (9) −0.0183 (2) 0.25369 (18) 0.0244 (5)
C18 −0.11870 (11) −0.2366 (3) −0.0142 (2) 0.0362 (6)
H18 −0.1337 −0.3196 −0.0343 0.043*
C19 −0.15243 (10) −0.1264 (3) −0.0490 (2) 0.0363 (6)
H19 −0.1902 −0.1389 −0.0929 0.044*
C2 0.18659 (10) 0.0169 (2) 0.30092 (19) 0.0267 (5)
C6 0.13841 (10) −0.2672 (2) 0.28959 (18) 0.0260 (5)
C1 0.22833 (10) −0.0375 (3) 0.28392 (19) 0.0307 (6)
H1 0.2246 −0.1151 0.2465 0.037*
C5 0.19175 (10) −0.2883 (3) 0.36968 (19) 0.0312 (6)
H5 0.2183 −0.2229 0.3993 0.037*
C3 0.27773 (10) 0.0370 (3) 0.3294 (2) 0.0358 (6)
H3 0.3099 0.0135 0.3251 0.043*
C21 −0.01907 (11) 0.3958 (3) 0.0982 (2) 0.0426 (7)
H21 −0.0073 0.4821 0.1076 0.051*
C8 0.15717 (11) −0.4972 (3) 0.3474 (2) 0.0394 (7)
H8 0.1568 −0.5866 0.3581 0.047*
C20 −0.07546 (11) 0.3638 (3) 0.0395 (2) 0.0390 (7)
H20 −0.1007 0.4319 0.0113 0.047*
C17 −0.06273 (10) −0.2195 (3) 0.0506 (2) 0.0332 (6)
H17 −0.0391 −0.2909 0.0764 0.040*
C4 0.27329 (10) 0.1460 (3) 0.3795 (2) 0.0381 (7)
H4 0.3019 0.2056 0.4140 0.046*
C22 0.01805 (11) 0.2963 (2) 0.1410 (2) 0.0340 (6)
H22 0.0557 0.3143 0.1815 0.041*
C7 0.20172 (10) −0.4207 (3) 0.4020 (2) 0.0344 (6)
H7 0.2355 −0.4514 0.4553 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0269 (3) 0.0271 (3) 0.0511 (4) −0.0011 (3) 0.0089 (3) −0.0050 (3)
S2 0.0289 (4) 0.0258 (3) 0.0491 (4) −0.0013 (3) 0.0075 (3) 0.0031 (3)
C13 0.0225 (12) 0.0267 (13) 0.0261 (12) 0.0035 (10) 0.0085 (10) 0.0005 (10)
C16 0.0202 (11) 0.0317 (13) 0.0231 (11) 0.0009 (10) 0.0089 (9) 0.0029 (10)
N4 0.0266 (11) 0.0325 (12) 0.0386 (12) 0.0080 (9) 0.0096 (10) 0.0036 (10)
C11 0.0197 (11) 0.0297 (13) 0.0236 (12) 0.0034 (10) 0.0093 (9) 0.0021 (10)
C12 0.0225 (12) 0.0267 (12) 0.0242 (11) 0.0015 (10) 0.0105 (9) 0.0012 (10)
N1 0.0210 (10) 0.0258 (10) 0.0271 (10) 0.0020 (8) 0.0077 (8) 0.0001 (9)
C9 0.0223 (12) 0.0258 (12) 0.0238 (11) 0.0011 (9) 0.0096 (9) 0.0005 (10)
N2 0.0212 (10) 0.0274 (11) 0.0262 (10) 0.0008 (8) 0.0079 (8) 0.0010 (9)
N3 0.0218 (10) 0.0381 (12) 0.0305 (11) −0.0004 (9) 0.0074 (9) 0.0013 (10)
C15 0.0211 (12) 0.0328 (13) 0.0243 (12) 0.0022 (10) 0.0092 (10) 0.0044 (10)
C14 0.0230 (12) 0.0335 (13) 0.0251 (12) 0.0046 (10) 0.0106 (10) 0.0016 (11)
C10 0.0210 (12) 0.0264 (12) 0.0233 (12) 0.0029 (10) 0.0077 (9) 0.0020 (10)
C18 0.0293 (14) 0.0332 (14) 0.0412 (15) −0.0082 (11) 0.0117 (12) −0.0007 (12)
C19 0.0182 (12) 0.0503 (17) 0.0353 (14) −0.0029 (12) 0.0077 (10) 0.0054 (13)
C2 0.0237 (12) 0.0233 (12) 0.0279 (12) −0.0011 (9) 0.0071 (10) 0.0027 (10)
C6 0.0221 (12) 0.0245 (12) 0.0284 (12) 0.0001 (9) 0.0089 (10) −0.0002 (10)
C1 0.0243 (12) 0.0342 (14) 0.0315 (13) 0.0010 (11) 0.0108 (10) 0.0010 (11)
C5 0.0257 (13) 0.0311 (14) 0.0311 (13) 0.0022 (10) 0.0080 (10) 0.0045 (11)
C3 0.0226 (13) 0.0481 (17) 0.0348 (14) 0.0024 (12) 0.0113 (11) 0.0099 (13)
C21 0.0339 (15) 0.0288 (14) 0.0552 (18) 0.0039 (11) 0.0117 (13) −0.0015 (13)
C8 0.0373 (15) 0.0282 (14) 0.0492 (17) 0.0078 (12) 0.0167 (13) 0.0104 (13)
C20 0.0330 (14) 0.0303 (14) 0.0443 (16) 0.0113 (12) 0.0094 (12) 0.0040 (12)
C17 0.0268 (13) 0.0314 (14) 0.0368 (14) 0.0008 (11) 0.0104 (11) 0.0034 (12)
C4 0.0225 (13) 0.0377 (15) 0.0418 (15) −0.0073 (11) 0.0041 (11) 0.0071 (13)
C22 0.0247 (13) 0.0293 (13) 0.0417 (15) 0.0030 (10) 0.0097 (11) −0.0014 (12)
C7 0.0265 (13) 0.0337 (14) 0.0363 (14) 0.0067 (11) 0.0083 (11) 0.0085 (12)

Geometric parameters (Å, º)

S1—C4 1.707 (3) C18—C17 1.374 (3)
S1—C2 1.723 (2) C18—C19 1.394 (4)
S2—C8 1.704 (3) C18—H18 0.9300
S2—C6 1.727 (2) C19—H19 0.9300
C13—C22 1.395 (3) C2—C1 1.371 (3)
C13—C14 1.411 (3) C6—C5 1.378 (3)
C13—C11 1.449 (3) C1—C3 1.414 (3)
C16—C17 1.394 (3) C1—H1 0.9300
C16—C15 1.402 (3) C5—C7 1.418 (4)
C16—C12 1.462 (3) C5—H5 0.9300
N4—C20 1.318 (3) C3—C4 1.351 (4)
N4—C14 1.349 (3) C3—H3 0.9300
C11—N1 1.350 (3) C21—C22 1.364 (4)
C11—C12 1.391 (3) C21—C20 1.401 (4)
C12—N2 1.343 (3) C21—H21 0.9300
N1—C10 1.331 (3) C8—C7 1.345 (4)
C9—N2 1.342 (3) C8—H8 0.9300
C9—C10 1.437 (3) C20—H20 0.9300
C9—C6 1.463 (3) C17—H17 0.9300
N3—C19 1.321 (3) C4—H4 0.9300
N3—C15 1.356 (3) C22—H22 0.9300
C15—C14 1.468 (3) C7—H7 0.9300
C10—C2 1.467 (3)
C4—S1—C2 92.22 (13) C1—C2—C10 129.5 (2)
C8—S2—C6 92.10 (13) C1—C2—S1 110.35 (18)
C22—C13—C14 117.7 (2) C10—C2—S1 119.32 (18)
C22—C13—C11 121.9 (2) C5—C6—C9 133.1 (2)
C14—C13—C11 120.3 (2) C5—C6—S2 110.26 (19)
C17—C16—C15 118.8 (2) C9—C6—S2 116.07 (17)
C17—C16—C12 121.6 (2) C2—C1—C3 112.8 (2)
C15—C16—C12 119.6 (2) C2—C1—H1 123.6
C20—N4—C14 117.2 (2) C3—C1—H1 123.6
N1—C11—C12 120.7 (2) C6—C5—C7 112.5 (2)
N1—C11—C13 119.1 (2) C6—C5—H5 123.7
C12—C11—C13 120.2 (2) C7—C5—H5 123.7
N2—C12—C11 121.0 (2) C4—C3—C1 113.0 (2)
N2—C12—C16 118.4 (2) C4—C3—H3 123.5
C11—C12—C16 120.5 (2) C1—C3—H3 123.5
C10—N1—C11 119.0 (2) C22—C21—C20 117.9 (3)
N2—C9—C10 119.5 (2) C22—C21—H21 121.1
N2—C9—C6 113.5 (2) C20—C21—H21 121.1
C10—C9—C6 126.9 (2) C7—C8—S2 112.2 (2)
C9—N2—C12 119.1 (2) C7—C8—H8 123.9
C19—N3—C15 117.3 (2) S2—C8—H8 123.9
N3—C15—C16 122.1 (2) N4—C20—C21 124.6 (2)
N3—C15—C14 117.8 (2) N4—C20—H20 117.7
C16—C15—C14 120.0 (2) C21—C20—H20 117.7
N4—C14—C13 122.7 (2) C18—C17—C16 118.9 (2)
N4—C14—C15 118.0 (2) C18—C17—H17 120.5
C13—C14—C15 119.3 (2) C16—C17—H17 120.5
N1—C10—C9 120.2 (2) C3—C4—S1 111.7 (2)
N1—C10—C2 114.8 (2) C3—C4—H4 124.2
C9—C10—C2 125.0 (2) S1—C4—H4 124.2
C17—C18—C19 118.3 (2) C21—C22—C13 119.9 (2)
C17—C18—H18 120.9 C21—C22—H22 120.0
C19—C18—H18 120.9 C13—C22—H22 120.0
N3—C19—C18 124.5 (2) C8—C7—C5 112.9 (2)
N3—C19—H19 117.7 C8—C7—H7 123.5
C18—C19—H19 117.7 C5—C7—H7 123.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2049).

References

  1. Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Isaia, F., Garau, A., Lippolis, V., Jalali, F., Papke, U., Shamsipur, M., Tei, L., Yari, A. & Verani, G. (2002). Inorg. Chem. 41, 6623–6632. [DOI] [PubMed]
  2. Armaroli, N., Cola, L. D., Balzani, V., Sauvage, J. P., Buchecker, C. O. D. & Kern, J. M. (1992). J. Chem. Soc. Faraday Trans. 88, 553–556.
  3. Bencini, A., Bernardo, M. A., Bianchi, A., Fusi, V., Giorgi, C., Pina, F. & Valtancoli, B. (1999). Eur. J. Inorg. Chem. pp. 1911–1918.
  4. Bruker (2005). APEX2 and SAINT Bruker Axs Inc., Madison, Wisconsin, USA.
  5. Chen, J. P. & Li, X. C. C. (2004). US Patent 6713781 B1.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201522X/aa2049sup1.cif

e-68-o1443-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201522X/aa2049Isup2.hkl

e-68-o1443-Isup2.hkl (189.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES