Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1444. doi: 10.1107/S1600536812016108

3-Amino­pyridin-1-ium 3-carb­oxy­benzo­ate

Jose J Campos-Gaxiola a, Simón Hernández-Ortega b,*, David Morales-Morales b, Adriana Cruz Enríquez a
PMCID: PMC3344561  PMID: 22590323

Abstract

In the title organic salt, C5H7N2 +·C8H5O4 , the carb­oxy­lic group is nearly coplanar with the benzene ring [dihedral angle 1.9 (4)°] whereas the carboxyl­ate group is twisted relative to the benzene ring by 13.6 (4)°. In the crystal, N-H⋯O and O—H⋯O hydrogen bonds connect the components into a three-dimensional framework consisting of stacks of alternating pairs of anions and cations exhibiting π–π stacking inter­actions with centroid–centroid distances in the range 3.676 (2)–3.711 (1) Å. The π–π stacks extend along [110] and [-110].

Related literature  

For background to crystal engineering with carb­oxy­lic acids and pyridine, see: Aakeröy & Salmon (2005); Almarsson & Zaworotko (2004); Mohamed et al. (2009); Sarma et al. (2009). graphic file with name e-68-o1444-scheme1.jpg

Experimental  

Crystal data  

  • C5H7N2 +·C8H5O4

  • M r = 260.25

  • Monoclinic, Inline graphic

  • a = 11.9282 (13) Å

  • b = 8.3715 (9) Å

  • c = 13.1421 (14) Å

  • β = 113.138 (2)°

  • V = 1206.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.42 × 0.28 × 0.19 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • 9652 measured reflections

  • 2216 independent reflections

  • 1668 reflections with I > 2σ(I)

  • R int = 0.065

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.154

  • S = 1.05

  • 2216 reflections

  • 184 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016108/gk2468sup1.cif

e-68-o1444-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016108/gk2468Isup2.hkl

e-68-o1444-Isup2.hkl (109KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016108/gk2468Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.86 (1) 1.76 (1) 2.616 (2) 173 (3)
N1—H1A⋯O4ii 0.89 (1) 2.02 (1) 2.880 (2) 162 (2)
N1—H1B⋯O2iii 0.91 (1) 2.11 (2) 2.967 (3) 157 (2)
N9—H9⋯O3iv 0.91 (1) 1.97 (1) 2.858 (3) 167 (3)
N9—H9⋯O4iv 0.91 (1) 2.25 (2) 2.930 (3) 131 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. Inter­molecular π–π stacking inter­actions in the title compound (Å).

centroid centroid distance Symmetry-code
C1—C6 C1—C6 3.711 (1) (i)
C1—C6 N9—C14 3.676 (2) (ii)
N9—C14 N9—C14 3.701 (2) (iii)

(i) −x + 1, −y, −z, (ii) x, −y + Inline graphic, z − Inline graphic; (iii) −x, −y, −z + 1

Acknowledgments

Financial support of this work by the Secretaría de Educación Pública (PROMEP-UAS, PTC-035), the Universidad Autónoma de Sinaloa (PROFAPI 2011/048) and CONACyT (grant No. 1564732) is gratefully acknowledged. Thanks are given to the Consejo Superior de Investigaciones Cientificas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD).

supplementary crystallographic information

Comment

The identification of supramolecular synthons between common functional groups is the first step towards crystal engineering. Specific recognition of the carboxylic acid group and pyridine (acid-pyridine synthon) (Aakeröy & Salmon, 2005; Almarsson & Zaworotko, 2004), or their analogs with proton transfer (Mohamed et al., 2009; Sarma et al., 2009), has been well studied. Both carboxylic acid and pyridine are popular substrates in supramolecular synthesis and herein we report the molecular and crystal structure of 3-aminopyridin-1-ium 3-carboxybenzoate.

The asymmetric unit consists of one 3-aminopyridin-1-ium cation (3AP+) and one 3-carboxybenzoate anion (3CB-), shown in Figure 1. The geometry of intermolecular interactions are given in Table 1. The 3CB- anion is almost planar with the carboxyl and carboxylate groups forming dihedral angles of 1.9 (4)° and 13.6 (4)°, respectively. A typical pyridinium-carboxylate R22(7) synthon is not observed in this organic salt as the pyridinium N9-H9 group forms a three-center interaction with the carboxylate O3 and O4 atoms acting as acceptors (Table 1). Two 3CB- anions are connected via a short O-H···O hydrogen bonds and the pairs of hydrogen bonded anions are bridged by the primary amino group forming two N-H···O hydrogen bonds. These three interactions generate R66(18) ring motif and a two-dimensional assembly parallel to (-1 0 2). Adjacent assemblies are connected by hydrogen bonds between the pyridinium N-H groups and the carboxylate groups into a three dimensional framework. This framework consists of stacks of alternating pairs of anions and cations exhibiting π-π stacking interactions with centroid-centroid distances in the range 3.676 (2)-3.711 (1) Å (Table 2). The π-π stacks are extending along [1 1 0] and [-1 1 0].

Experimental

3-Aminopyridine (0.531 mmol), benzene-1,3-dicarboxylic acid (0.531 mmol) and CH3OH (8 ml) were mixed and the resulting solution allowed to stand at room temperature. After two weeks, colorless crystals of the title compound were obtained (m.p. 498 K).

Refinement

H atoms were positioned geometrically and constrained using riding-model approximation C—H = 0.93 Å, Uiso (H) = 1.2 Ueq(C). Hydrogen atoms bonded to O (H1) and N (H1A, H1B and H9) were located in difference Fourier maps. The coordinates of the O—H and N—H hydrogen atoms were refined with distance restraints: O—H = 0.86 (1) Å, N—H = 0.90 (1) Å and Uiso(H) = 1.2 Ueq(O, N).

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound with displacement ellipsoids drawn at the 40% probability level. Hydrogen atoms from C-H groups are omitted.

Fig. 2.

Fig. 2.

Packing diagram of the title compound. The intermolecular O—H···O, N—H···O hydrogen bonds and π···π interactions are shown as dashed lines.

Crystal data

C5H7N2+·C8H5O4 F(000) = 544
Mr = 260.25 Dx = 1.432 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4087 reflections
a = 11.9282 (13) Å θ = 3.0–25.3°
b = 8.3715 (9) Å µ = 0.11 mm1
c = 13.1421 (14) Å T = 298 K
β = 113.138 (2)° Prism, colourless
V = 1206.8 (2) Å3 0.42 × 0.28 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1668 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.065
Graphite monochromator θmax = 25.4°, θmin = 1.9°
Detector resolution: 0.83 pixels mm-1 h = −14→14
ω scans k = −10→10
9652 measured reflections l = −15→15
2216 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.2115P] where P = (Fo2 + 2Fc2)/3
2216 reflections (Δ/σ)max < 0.001
184 parameters Δρmax = 0.23 e Å3
4 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.58230 (14) 0.2128 (2) 0.26222 (13) 0.0548 (5)
H1 0.6446 (16) 0.257 (3) 0.3133 (16) 0.066*
O2 0.6431 (2) 0.3505 (3) 0.15207 (17) 0.1158 (10)
O3 0.22032 (13) −0.15499 (19) 0.09404 (13) 0.0517 (5)
O4 0.09883 (14) −0.1061 (2) −0.07778 (15) 0.0694 (6)
N1 0.11595 (19) 0.0115 (3) 0.26504 (17) 0.0627 (6)
H1A 0.0560 (18) 0.027 (3) 0.1989 (12) 0.075*
H1B 0.1824 (17) −0.047 (3) 0.270 (2) 0.075*
C1 0.46713 (18) 0.1929 (2) 0.06964 (17) 0.0403 (5)
C2 0.38557 (17) 0.0848 (2) 0.08307 (17) 0.0361 (5)
H2 0.3967 0.0498 0.1535 0.043*
C3 0.28745 (17) 0.0288 (2) −0.00859 (17) 0.0369 (5)
C4 0.27335 (19) 0.0822 (3) −0.11310 (18) 0.0452 (6)
H4 0.2077 0.0461 −0.1749 0.054*
C5 0.3553 (2) 0.1878 (3) −0.12654 (19) 0.0511 (6)
H5 0.3453 0.2216 −0.1970 0.061*
C6 0.4514 (2) 0.2428 (3) −0.03560 (18) 0.0477 (6)
H6 0.5065 0.3141 −0.0446 0.057*
C7 0.5726 (2) 0.2594 (3) 0.16453 (19) 0.0497 (6)
C8 0.19579 (18) −0.0850 (2) 0.00273 (18) 0.0420 (5)
N9 0.0135 (3) 0.2041 (3) 0.4558 (3) 0.0770 (8)
H9 −0.0550 (17) 0.256 (3) 0.451 (3) 0.092*
C10 0.0165 (2) 0.1532 (3) 0.3625 (3) 0.0608 (7)
H10 −0.0470 0.1791 0.2959 0.073*
C11 0.11220 (19) 0.0622 (2) 0.36152 (19) 0.0443 (6)
C12 0.2049 (2) 0.0253 (3) 0.46412 (19) 0.0453 (5)
H12 0.2703 −0.0377 0.4673 0.054*
C13 0.1992 (3) 0.0818 (3) 0.5596 (2) 0.0601 (7)
H13 0.2613 0.0589 0.6276 0.072*
C14 0.1005 (3) 0.1731 (3) 0.5541 (3) 0.0776 (10)
H14 0.0951 0.2122 0.6183 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0476 (10) 0.0693 (11) 0.0425 (10) −0.0175 (8) 0.0122 (7) −0.0059 (8)
O2 0.1051 (17) 0.170 (2) 0.0587 (13) −0.1032 (17) 0.0171 (12) −0.0029 (14)
O3 0.0402 (9) 0.0588 (10) 0.0498 (10) −0.0096 (7) 0.0110 (7) 0.0132 (8)
O4 0.0380 (9) 0.0790 (12) 0.0653 (12) −0.0198 (9) −0.0074 (8) 0.0209 (10)
N1 0.0545 (13) 0.0724 (15) 0.0462 (13) 0.0151 (11) 0.0038 (10) −0.0017 (11)
C1 0.0343 (11) 0.0422 (12) 0.0442 (12) −0.0037 (9) 0.0151 (9) −0.0032 (9)
C2 0.0322 (10) 0.0388 (11) 0.0361 (11) 0.0012 (8) 0.0121 (8) 0.0021 (9)
C3 0.0299 (10) 0.0365 (11) 0.0404 (12) 0.0017 (8) 0.0098 (9) 0.0020 (9)
C4 0.0401 (12) 0.0502 (13) 0.0379 (12) −0.0036 (10) 0.0075 (9) 0.0010 (10)
C5 0.0539 (14) 0.0619 (15) 0.0382 (13) −0.0053 (12) 0.0189 (11) 0.0047 (11)
C6 0.0453 (13) 0.0520 (13) 0.0490 (14) −0.0113 (10) 0.0222 (10) 0.0014 (11)
C7 0.0459 (13) 0.0583 (14) 0.0436 (13) −0.0140 (11) 0.0164 (11) −0.0023 (11)
C8 0.0306 (11) 0.0409 (12) 0.0476 (13) −0.0003 (9) 0.0081 (10) 0.0050 (10)
N9 0.0859 (19) 0.0427 (13) 0.136 (3) 0.0153 (12) 0.079 (2) 0.0137 (15)
C10 0.0443 (14) 0.0436 (14) 0.099 (2) 0.0090 (11) 0.0326 (14) 0.0114 (13)
C11 0.0364 (12) 0.0365 (12) 0.0572 (14) −0.0002 (9) 0.0155 (10) 0.0022 (10)
C12 0.0417 (12) 0.0433 (12) 0.0523 (14) 0.0060 (10) 0.0200 (10) −0.0008 (10)
C13 0.0775 (18) 0.0521 (15) 0.0565 (16) −0.0061 (13) 0.0326 (14) −0.0062 (12)
C14 0.130 (3) 0.0440 (15) 0.102 (3) −0.0105 (17) 0.092 (2) −0.0148 (15)

Geometric parameters (Å, º)

O1—C7 1.303 (3) C4—H4 0.9300
O1—H1 0.864 (10) C5—C6 1.370 (3)
O2—C7 1.193 (3) C5—H5 0.9300
O3—C8 1.262 (3) C6—H6 0.9300
O4—C8 1.236 (2) N9—C10 1.312 (4)
N1—C11 1.354 (3) N9—C14 1.327 (4)
N1—H1A 0.892 (10) N9—H9 0.905 (10)
N1—H1B 0.909 (10) C10—C11 1.376 (3)
C1—C6 1.385 (3) C10—H10 0.9300
C1—C2 1.390 (3) C11—C12 1.401 (3)
C1—C7 1.488 (3) C12—C13 1.367 (3)
C2—C3 1.390 (3) C12—H12 0.9300
C2—H2 0.9300 C13—C14 1.382 (4)
C3—C4 1.390 (3) C13—H13 0.9300
C3—C8 1.501 (3) C14—H14 0.9300
C4—C5 1.380 (3)
C7—O1—H1 110.8 (18) O2—C7—C1 122.2 (2)
C11—N1—H1A 123.9 (18) O1—C7—C1 115.60 (19)
C11—N1—H1B 116.5 (18) O4—C8—O3 122.5 (2)
H1A—N1—H1B 119 (3) O4—C8—C3 118.6 (2)
C6—C1—C2 119.72 (19) O3—C8—C3 118.89 (18)
C6—C1—C7 117.55 (19) C10—N9—C14 123.3 (2)
C2—C1—C7 122.73 (19) C10—N9—H9 116 (2)
C1—C2—C3 120.16 (19) C14—N9—H9 120 (2)
C1—C2—H2 119.9 N9—C10—C11 121.0 (3)
C3—C2—H2 119.9 N9—C10—H10 119.5
C2—C3—C4 118.80 (19) C11—C10—H10 119.5
C2—C3—C8 121.75 (19) N1—C11—C10 121.0 (2)
C4—C3—C8 119.45 (19) N1—C11—C12 121.9 (2)
C5—C4—C3 121.0 (2) C10—C11—C12 117.2 (2)
C5—C4—H4 119.5 C13—C12—C11 120.1 (2)
C3—C4—H4 119.5 C13—C12—H12 119.9
C6—C5—C4 119.7 (2) C11—C12—H12 119.9
C6—C5—H5 120.2 C12—C13—C14 119.5 (3)
C4—C5—H5 120.2 C12—C13—H13 120.3
C5—C6—C1 120.6 (2) C14—C13—H13 120.3
C5—C6—H6 119.7 N9—C14—C13 118.9 (2)
C1—C6—H6 119.7 N9—C14—H14 120.6
O2—C7—O1 122.2 (2) C13—C14—H14 120.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O3 0.91 (1) 2.69 (2) 3.277 (3) 124 (2)
O1—H1···O3i 0.86 (1) 1.76 (1) 2.616 (2) 173 (3)
N1—H1A···O4ii 0.89 (1) 2.02 (1) 2.880 (2) 162 (2)
N1—H1B···O2iii 0.91 (1) 2.11 (2) 2.967 (3) 157 (2)
N9—H9···O3iv 0.91 (1) 1.97 (1) 2.858 (3) 167 (3)
N9—H9···O4iv 0.91 (1) 2.25 (2) 2.930 (3) 131 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, −y, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2.

Intermolecular π–π stacking interactions in the title compound (Å)

centroid centroid distance Symmetry-code
C1-C6 C1-C6 3.711 (1) (i)
C1-C6 N9-C14 3.676 (2) (ii)
N9-C14 N9-C14 3.701 (2) (iii)

(i) -x+1, -y, -z, (ii) x, -y+1/2, z-1/2; (iii) -x, -y, -z+1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2468).

References

  1. Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448. [DOI] [PMC free article] [PubMed]
  2. Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. [DOI] [PubMed]
  3. Bruker (2007). SAINT & SMART . Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Mohamed, S., Derek, A. T., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881–2889.
  5. Sarma, B., Nath, N. K., Bhogala, B. R. & Nangia, A. (2009). Cryst. Growth Des. 9, 1546–1557.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016108/gk2468sup1.cif

e-68-o1444-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016108/gk2468Isup2.hkl

e-68-o1444-Isup2.hkl (109KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016108/gk2468Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES