Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1453–o1454. doi: 10.1107/S1600536812016133

Tizoxanide pyridine monosolvate

Huaqin Zheng a, Hui Deng a, Yunyun Chen a, Ding Li a,*
PMCID: PMC3344569  PMID: 22590331

Abstract

In the title compound [systematic name: 2-hy­droxy-N-(5-nitro-1,3-thia­zol-2-yl)benzamide pyridine monosolvate], C10H7N3O4S·C5H5N, the dihedral angle between the pyridine and benzamide rings is 80.55 (7)°. An intamolecular O—H⋯N hydrogen bond occurs in the tizoxanide. In the crystal, the components are linked by an O–H⋯N hydrogen bond, forming a zigzag chain along the c axis. Aromatic π–π inter­actions between inversion-related pyridine rings [centroid–centroid distance = 3.803 (6) Å] are also observed.

Related literature  

For the biological activity of tizoxanide, see: Rao et al. (2009); Gargala et al. (2000); Dubreuil et al. (1996); Ashton et al. (2010); Korba, Elazar et al. (2008); Zhao et al. (2010). For related structures and background to the bioactivity of tizoxanide, see: Pankuch & Appelbaum (2006); Stettler et al. (2003); Broekhuysen et al. (2000). For details on experimental methods used to obtain this form and analogues, see: Navarrete-Vazquez et al. (2011). For a pyridine-solvated forms, see: Dong et al. (2011). For additional literature on related tizoxanide thiazolide compounds, see: Megraud et al. (1998); Chan-Bacab et al. (2009); Korba, Montero et al. (2008); Stachulski et al. (2011a b ). For the biological activity of the anti-parasitic agent nitazoxanide {systematic name: [2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl]ethanoate}, see: Hemp­hill et al. (2006); Rossignol et al. (2006). For the structure of nitazoxanide, see: Bruno et al. (2010). For the effect of crystallization from different solvents on drug properties, see: Trask et al. (2004). graphic file with name e-68-o1453-scheme1.jpg

Experimental  

Crystal data  

  • C10H7N3O4S·C5H5N

  • M r = 344.35

  • Triclinic, Inline graphic

  • a = 6.9826 (3) Å

  • b = 10.0462 (5) Å

  • c = 11.8387 (7) Å

  • α = 102.998 (5)°

  • β = 99.037 (5)°

  • γ = 104.367 (4)°

  • V = 763.69 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.16 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Agilent Xcalibur Onyx Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.712, T max = 0.806

  • 4493 measured reflections

  • 2481 independent reflections

  • 2349 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.075

  • S = 1.08

  • 2481 reflections

  • 265 parameters

  • All H-atom parameters refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016133/qm2062sup1.cif

e-68-o1453-sup1.cif (20.8KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812016133/qm2062Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016133/qm2062Isup3.hkl

e-68-o1453-Isup3.hkl (124.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016133/qm2062Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O1 0.85 (2) 1.95 (2) 2.6248 (16) 135.9 (18)
O1—H25⋯N8 0.94 (2) 1.64 (2) 2.5671 (16) 175 (3)

Acknowledgments

We thank Sun Yat-sen University for financial support of this work. We also thank Professor Xiaopeng Hu for the data collection.

supplementary crystallographic information

Comment

Nitazoxanide was first developed as an anti-parasitic agent, and marketed in the USA since 2002 (Stachulski et al., 2011a). In humans, once orally administered, nitazoxanide is hydrolyzed in plasma to its active metabolite tizoxanide (TIZ), which is 99% protein bound (Broekhuysen et al., 2000; Ashton et al., 2010). Nitazoxanide exhibits a broad spectrum of activities against intracellular and extracellular protozoa, helminthes, aerobic and anaerobic bacteria, and viruses infecting humans and animals (Hemphill et al., 2006; Rossignol et al., 2006; Korba, Montero et al., 2008; Zhao et al., 2010; Stachulski et al., 2011b).

In the present study, tizoxanide was prepared via deacetylation of nitazoxanide in pyridine and it crystallized as a 1:1 ratio complex with pyridine as crystals. Thermogravimetric analysis was performed to study the thermal stability of the title complex, which indicated a one-step molecular weight loss of 22.43% corresponding to one pyridine molecule in the temperature range of 333–373 K, confirming a 1:1 ratio complex of tizoxanide-pyridine (theoretical weight loss 22.97%).

The tizoxanide and pyridine are linked through hydrogen bond O1–H···N8 (bond distance = 2.567 Å). A stable crystal was formed through intramolecular O1—H···N7 (bond distance = 2.625 Å) and intermolecular O1—H···N8 hydrogen-bonding interactions involving the benzamide group and the pyridine molecule. It is arresting that π–π interactions play an important role in the molecular packing. Inversion-related pyridine molecules are linked by π-π interactions [centroid-centroid distance = 3.803 (6) Å], which stabilize the crystal. By comparison with X-ray of prodrug nitazoxanide (Bruno et al., 2010), tizoxanide has stronger intramolecular hydrogen bonds. These hydrogen bonds may be useful for pharmaceutical preparation of tizoxanide. The molecular and crystal structures are stabilized by intra- (O1—H···N7) and intermolecular (O1—H···N8, π-stacking) interactions respectively, which give a great stability to the crystal building.

When the drug crystallized from different solvents, the crystal form may be changed and then altering a drug's properties, such as melting point and solubility (Trask et al., 2004). We speculated that the replacement of a weak alkaline solvent or solid compound containing the pyridine ring may form the corresponding crystals made of different formulations of active drugs for tizoxanide. Obviously, crystal form of the title compound is different from prodrug nitazoxanide, which suggests that changing solvent or pyridine derivatives may form new crystals and new dosage forms of drugs. This is our future work.

Experimental

A solution of 80 mg of nitazoxanide in 250 ul of pyridine was stirred for 15 min at 333 K and left to crystallize at 293 K overnight. A size suitable flaxen needle was attained for X-ray analysis.

Thermogravimetric analysis for the title complex was performed using a NETZSCH STA409 instrument with sample. The sample was placed in an aluminium cell, heated at 5 °C min-1 and purged with nitrogen gas flowing at 20 cm3 min-1.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound (I). The displacement ellipsoids are at the 50% probability level.

Fig. 2.

Fig. 2.

The two-dimensional plane formed by the hydrogen bonds of the molecules; dashed lines represent hydrogen bonds and some of the H atoms have been omitted for reasons of clarity.

Fig. 3.

Fig. 3.

The thermogravimetric analysis of the title compound showing a one-step molecular weight loss of 22.43% corresponding to one pyridine molecule.

Crystal data

C10H7N3O4S·C5H5N Z = 2
Mr = 344.35 F(000) = 356
Triclinic, P1 Dx = 1.497 Mg m3
a = 6.9826 (3) Å Cu Kα radiation, λ = 1.5418 Å
b = 10.0462 (5) Å Cell parameters from 3840 reflections
c = 11.8387 (7) Å θ = 3.9–65.7°
α = 102.998 (5)° µ = 2.16 mm1
β = 99.037 (5)° T = 293 K
γ = 104.367 (4)° Rod, colorless
V = 763.69 (7) Å3 0.20 × 0.15 × 0.10 mm

Data collection

Agilent Xcalibur Onyx Nova diffractometer 2481 independent reflections
Radiation source: Nova (Cu) X-ray Source 2349 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.016
Detector resolution: 8.2417 pixels mm-1 θmax = 64.0°, θmin = 3.9°
ω scans h = −4→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −11→11
Tmin = 0.712, Tmax = 0.806 l = −13→13
4493 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.2467P] where P = (Fo2 + 2Fc2)/3
2481 reflections (Δ/σ)max = 0.001
265 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.13956 (5) 0.44049 (4) −0.18461 (3) 0.02193 (13)
O2 0.38793 (16) 0.69194 (12) −0.07942 (9) 0.0287 (3)
O4 −0.09371 (17) 0.24233 (13) −0.40776 (9) 0.0379 (3)
O5 −0.23353 (17) 0.06550 (12) −0.34113 (10) 0.0375 (3)
N6 −0.12170 (18) 0.18630 (14) −0.32633 (11) 0.0274 (3)
N7 0.31757 (17) 0.56377 (13) 0.04990 (11) 0.0200 (3)
N8 0.59845 (19) 0.69146 (13) 0.49121 (11) 0.0275 (3)
C9 0.5749 (2) 0.80811 (15) 0.24522 (13) 0.0208 (3)
C10 0.5468 (2) 0.80762 (15) 0.12457 (12) 0.0201 (3)
N11 0.09847 (18) 0.33048 (13) −0.00698 (11) 0.0225 (3)
C12 0.4136 (2) 0.68695 (15) 0.02405 (12) 0.0208 (3)
C13 −0.0197 (2) 0.22865 (17) −0.10729 (14) 0.0241 (3)
C14 −0.0158 (2) 0.26888 (16) −0.20893 (13) 0.0230 (3)
C15 0.8152 (2) 1.04417 (17) 0.29859 (14) 0.0290 (4)
C16 0.1899 (2) 0.44557 (15) −0.03509 (12) 0.0196 (3)
C17 0.7287 (2) 0.61931 (18) 0.51622 (16) 0.0344 (4)
C18 0.5727 (3) 0.7465 (2) 0.69334 (16) 0.0470 (5)
C19 0.6541 (2) 0.92756 (16) 0.09458 (14) 0.0252 (3)
C20 0.7871 (2) 1.04502 (17) 0.17969 (15) 0.0296 (4)
C21 0.5227 (3) 0.75377 (18) 0.57844 (15) 0.0354 (4)
C22 0.7067 (3) 0.6728 (2) 0.71945 (17) 0.0518 (6)
C23 0.7866 (3) 0.6082 (2) 0.6301 (2) 0.0489 (5)
C24 0.7100 (2) 0.92842 (16) 0.33129 (14) 0.0251 (3)
O1 0.47188 (15) 0.69476 (11) 0.27650 (9) 0.0237 (2)
H19 0.631 (3) 0.9235 (18) 0.0134 (17) 0.029 (4)*
H24 0.725 (3) 0.9313 (19) 0.4158 (17) 0.032 (4)*
H20 0.857 (3) 1.127 (2) 0.1564 (17) 0.040 (5)*
H13 −0.093 (3) 0.138 (2) −0.1026 (15) 0.028 (4)*
H15 0.906 (3) 1.122 (2) 0.3591 (17) 0.035 (5)*
H7 0.332 (3) 0.561 (2) 0.1221 (18) 0.033 (5)*
H17 0.779 (3) 0.575 (2) 0.4501 (18) 0.040 (5)*
H21 0.427 (3) 0.805 (2) 0.5559 (19) 0.052 (6)*
H22 0.739 (4) 0.670 (3) 0.799 (2) 0.075 (7)*
H18 0.514 (4) 0.800 (3) 0.762 (2) 0.068 (7)*
H23 0.877 (3) 0.558 (2) 0.641 (2) 0.056 (6)*
H25 0.525 (4) 0.698 (3) 0.355 (2) 0.073 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0230 (2) 0.0258 (2) 0.01336 (19) 0.00558 (15) 0.00094 (14) 0.00226 (14)
O2 0.0343 (6) 0.0325 (6) 0.0151 (5) 0.0044 (5) 0.0018 (4) 0.0073 (4)
O4 0.0353 (6) 0.0502 (7) 0.0181 (6) 0.0042 (5) 0.0012 (5) 0.0023 (5)
O5 0.0310 (6) 0.0309 (6) 0.0347 (7) −0.0005 (5) −0.0007 (5) −0.0057 (5)
N6 0.0209 (6) 0.0329 (8) 0.0206 (7) 0.0062 (6) 0.0005 (5) −0.0030 (6)
N7 0.0223 (6) 0.0237 (6) 0.0121 (6) 0.0062 (5) 0.0014 (5) 0.0033 (5)
N8 0.0310 (7) 0.0258 (7) 0.0186 (6) −0.0012 (5) 0.0002 (5) 0.0063 (5)
C9 0.0200 (7) 0.0237 (7) 0.0195 (7) 0.0088 (6) 0.0045 (6) 0.0049 (6)
C10 0.0200 (7) 0.0232 (7) 0.0176 (7) 0.0096 (6) 0.0037 (6) 0.0035 (6)
N11 0.0227 (6) 0.0238 (6) 0.0200 (6) 0.0071 (5) 0.0034 (5) 0.0044 (5)
C12 0.0194 (7) 0.0249 (8) 0.0186 (7) 0.0086 (6) 0.0038 (6) 0.0051 (6)
C13 0.0208 (7) 0.0237 (8) 0.0249 (8) 0.0062 (6) 0.0032 (6) 0.0027 (6)
C14 0.0192 (7) 0.0255 (8) 0.0197 (7) 0.0064 (6) 0.0010 (6) −0.0006 (6)
C15 0.0291 (8) 0.0231 (8) 0.0263 (8) 0.0031 (7) 0.0008 (7) −0.0009 (7)
C16 0.0186 (7) 0.0247 (7) 0.0158 (7) 0.0097 (6) 0.0031 (5) 0.0030 (6)
C17 0.0292 (8) 0.0318 (9) 0.0379 (10) 0.0005 (7) 0.0043 (7) 0.0128 (8)
C18 0.0652 (13) 0.0402 (10) 0.0225 (9) −0.0032 (9) 0.0079 (9) 0.0052 (8)
C19 0.0273 (8) 0.0267 (8) 0.0220 (8) 0.0086 (6) 0.0044 (6) 0.0078 (6)
C20 0.0320 (8) 0.0247 (8) 0.0300 (9) 0.0047 (7) 0.0058 (7) 0.0084 (7)
C21 0.0433 (10) 0.0320 (9) 0.0248 (9) 0.0046 (8) 0.0050 (7) 0.0047 (7)
C22 0.0655 (13) 0.0449 (11) 0.0231 (10) −0.0172 (10) −0.0096 (9) 0.0168 (9)
C23 0.0374 (10) 0.0422 (11) 0.0595 (14) −0.0019 (9) −0.0110 (9) 0.0292 (10)
C24 0.0268 (8) 0.0264 (8) 0.0187 (8) 0.0074 (6) 0.0022 (6) 0.0018 (6)
O1 0.0269 (5) 0.0253 (6) 0.0146 (5) 0.0025 (4) 0.0018 (4) 0.0048 (4)

Geometric parameters (Å, º)

S1—C14 1.7269 (15) C13—H13 0.944 (18)
S1—C16 1.7363 (14) C15—C20 1.393 (2)
O2—C12 1.2240 (18) C15—C24 1.382 (2)
O4—N6 1.2381 (17) C15—H15 0.94 (2)
O5—N6 1.2265 (18) C17—C23 1.383 (3)
N6—C14 1.4217 (19) C17—H17 0.97 (2)
N7—C12 1.3775 (19) C18—C21 1.373 (3)
N7—C16 1.3684 (19) C18—C22 1.369 (3)
N7—H7 0.85 (2) C18—H18 1.06 (2)
N8—C17 1.334 (2) C19—C20 1.377 (2)
N8—C21 1.335 (2) C19—H19 0.939 (18)
C9—C10 1.410 (2) C20—H20 0.97 (2)
C9—C24 1.403 (2) C21—H21 0.98 (2)
C9—O1 1.3483 (18) C22—C23 1.381 (3)
C10—C12 1.481 (2) C22—H22 0.94 (3)
C10—C19 1.403 (2) C23—H23 0.92 (2)
N11—C13 1.365 (2) C24—H24 0.983 (19)
N11—C16 1.3148 (19) O1—H25 0.93 (3)
C13—C14 1.355 (2)
C14—S1—C16 86.32 (7) N11—C16—S1 116.83 (11)
O4—N6—C14 116.98 (13) N11—C16—N7 121.36 (13)
O5—N6—O4 124.16 (13) N8—C17—C23 121.43 (18)
O5—N6—C14 118.86 (13) N8—C17—H17 116.3 (11)
C12—N7—H7 119.5 (13) C23—C17—H17 122.3 (11)
C16—N7—C12 123.00 (12) C21—C18—H18 121.1 (13)
C16—N7—H7 117.4 (13) C22—C18—C21 118.52 (19)
C17—N8—C21 118.94 (14) C22—C18—H18 120.4 (13)
C24—C9—C10 118.84 (13) C10—C19—H19 116.6 (11)
O1—C9—C10 120.13 (13) C20—C19—C10 121.77 (14)
O1—C9—C24 121.02 (13) C20—C19—H19 121.6 (11)
C9—C10—C12 124.80 (13) C15—C20—H20 121.2 (11)
C19—C10—C9 118.97 (13) C19—C20—C15 118.89 (15)
C19—C10—C12 116.22 (13) C19—C20—H20 119.8 (11)
C16—N11—C13 109.77 (12) N8—C21—C18 122.73 (18)
O2—C12—N7 119.41 (13) N8—C21—H21 116.0 (13)
O2—C12—C10 123.02 (13) C18—C21—H21 121.2 (13)
N7—C12—C10 117.56 (12) C18—C22—C23 119.32 (17)
N11—C13—H13 120.4 (11) C18—C22—H22 116.7 (16)
C14—C13—N11 114.35 (14) C23—C22—H22 124.0 (16)
C14—C13—H13 125.2 (11) C17—C23—H23 116.4 (15)
N6—C14—S1 120.07 (11) C22—C23—C17 119.06 (19)
C13—C14—S1 112.72 (11) C22—C23—H23 124.5 (15)
C13—C14—N6 127.21 (14) C9—C24—H24 119.1 (11)
C20—C15—H15 121.3 (11) C15—C24—C9 120.72 (14)
C24—C15—C20 120.79 (15) C15—C24—H24 120.1 (11)
C24—C15—H15 117.9 (11) C9—O1—H25 111.8 (16)
N7—C16—S1 121.81 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N7—H7···O1 0.85 (2) 1.95 (2) 2.6248 (16) 135.9 (18)
O1—H25···N8 0.94 (2) 1.64 (2) 2.5671 (16) 175 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2062).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Ashton, L. V., Callan, R. L., Rao, S. & Landolt, G. A. (2010). Vet Med Int. pii: 891010. [DOI] [PMC free article] [PubMed]
  3. Broekhuysen, J., Stockis, A., Lins, R. L., De Graeve, J. & Rossignol, J. F. (2000). Int. J. Clin. Pharmacol. Ther. 38, 387–394. [DOI] [PubMed]
  4. Bruno, F. P., Caira, M. R., Monti, G. A., Kassuha, D. E. & Sperandeo, N. R. (2010). J. Mol. Struct. 984, 51–57.
  5. Chan-Bacab, M. J., Hernandez-Nunez, E. & Navarrete-Vazquez, G. (2009). J. Antimicrob. Chemother. 63, 1292–1293. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Dong, F.-Y., Wu, J., Tian, H.-Y., Ye, Q.-M. & Jiang, R.-W. (2011). Acta Cryst. E67, o3096. [DOI] [PMC free article] [PubMed]
  8. Dubreuil, L., Houcke, I., Mouton, Y. & Rossignol, J. F. (1996). Antimicrob. Agents Chemother. 40, 2266–2270. [DOI] [PMC free article] [PubMed]
  9. Gargala, G., Delaunay, A., Li, X., Brasseur, P., Favennec, L. & Ballet, J. J. (2000). J. Antimicrob. Chemother. 46, 57–60. [DOI] [PubMed]
  10. Hemphill, A., Mueller, J. & Esposito, M. (2006). Expert Opin. Pharmacother. 7, 953–964. [DOI] [PubMed]
  11. Korba, B. E., Elazar, M., Lui, P., Rossignol, J. F. & Glenn, J. S. (2008). Antimicrob. Agents Chemother. 52, 4069–4071. [DOI] [PMC free article] [PubMed]
  12. Korba, B. E., Montero, A. B., Farrar, K., Gaye, K., Mukerjee, S., Ayers, M. S. & Rossignol, J. F. (2008). Antiviral Res. 77, 56–63. [DOI] [PubMed]
  13. Megraud, F., Occhialini, A. & Rossignol, J. F. (1998). Antimicrob. Agents Chemother. 42, 2836–2840. [DOI] [PMC free article] [PubMed]
  14. Navarrete-Vazquez, G., Chavez-Silva, F., Argotte-Ramos, R., Rodriguez-Gutierrez, M. C., Chan-Bacab, M. J., Cedillo-Rivera, R., Moo-Puc, R. & Hernandez-Nunez, E. (2011). Bioorg. Med. Chem. Lett. 21, 3168–3171. [DOI] [PubMed]
  15. Pankuch, G. A. & Appelbaum, P. C. (2006). Antimicrob. Agents Chemother. 50, 1112–1117. [DOI] [PMC free article] [PubMed]
  16. Rao, R. U., Huang, Y., Fischer, K., Fischer, P. U. & Weil, G. J. (2009). Exp. Parasitol. 121, 38–45. [DOI] [PubMed]
  17. Rossignol, J. F., Abu-Zekry, M., Hussein, A. & Santoro, M. G. (2006). Lancet, 368, 124–129. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Stachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011a). J. Med. Chem. 54, 4119–4132. [DOI] [PMC free article] [PubMed]
  20. Stachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Lawrenson, A. S., Moores, S. L., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011b). J. Med. Chem. 54, 8670–8680. [DOI] [PubMed]
  21. Stettler, M., Fink, R., Walker, M., Gottstein, B., Geary, T. G., Rossignol, J. F. & Hemphill, A. (2003). Antimicrob. Agents Chemother. 47, 467–474. [DOI] [PMC free article] [PubMed]
  22. Trask, A. V., Motherwell, W. D. & Jones, W. (2004). Chem. Commun. pp. 890–891. [DOI] [PubMed]
  23. Zhao, Z., Xue, F., Zhang, L., Zhang, K., Fei, C., Zheng, W., Wang, X., Wang, M., Zhao, Z. & Meng, X. (2010). J. Vet. Pharmacol. Ther. 33, 147–153. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016133/qm2062sup1.cif

e-68-o1453-sup1.cif (20.8KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812016133/qm2062Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016133/qm2062Isup3.hkl

e-68-o1453-Isup3.hkl (124.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016133/qm2062Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES