Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1455. doi: 10.1107/S160053681201639X

N′-(2,6-Dichloro­benzyl­idene)furan-2-carbohydrazide

Jun Xu a,*
PMCID: PMC3344570  PMID: 22590332

Abstract

In the title compound, C12H8Cl2N2O2, the dihedral angle between the furan and benzene rings is 72.90 (16)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [100].

Related literature  

For related structures, see: Okabe et al. (1993); Ohba (1996); Bakir & Gyles (2003).graphic file with name e-68-o1455-scheme1.jpg

Experimental  

Crystal data  

  • C12H8Cl2N2O2

  • M r = 283.10

  • Monoclinic, Inline graphic

  • a = 4.9046 (3) Å

  • b = 19.1113 (12) Å

  • c = 12.9469 (9) Å

  • β = 91.565 (5)°

  • V = 1213.10 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.17 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.814, T max = 0.847

  • 4654 measured reflections

  • 2464 independent reflections

  • 1679 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.126

  • S = 1.01

  • 2464 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201639X/hb6741sup1.cif

e-68-o1455-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201639X/hb6741Isup2.hkl

e-68-o1455-Isup2.hkl (121.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201639X/hb6741Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.07 2.890 (2) 159

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents (Okabe et al., 1993). As part of our ongoing studies of these materials, we synthesized the title compound, (I), and the crystal structure is presented herein. In the molecular structure of the compound, the molecular is not planar, the furyl ring makes a dihedral angle of 72.90 (16)° with the benzene ring. Bond lengths and angles are in agreement with other hydrazone derivatives (Ohba, 1996; Bakir & Gyles, 2003).

In the crystal, molecules are linked by N—H···O hydrogen bonds, generating one-dimensional chains.

Experimental

Furan-2-carbohydrazine (1 mmol, 0.126 g) was dissolved in anhydrous ethanol (10 ml), The mixture was stirred for several minitutes at 351k, 2,6-Dichlorobenzaldehyde (1 mmol, 0.175 g) in ethanol (20 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from DMF. Colorless blocks were obtained by slow evaporation of the compound dissoived in a mixture of ethanol and DMF.

Refinement

All H atoms were positioned geometrically and refined as riding with C—H=0.93 (aromatic), 0.97(methylene) and N—H=0.86 Å, with Uiso(H)=1.2Ueq(CH, CH2 or NH).

Figures

Fig. 1.

Fig. 1.

Voew of (I). Displacement ellipsoids are drawn at the 30% probability level. showing the intramolecular hydrogen bonds as dashed lines.

Fig. 2.

Fig. 2.

The molecular packing of the title compound,

Crystal data

C12H8Cl2N2O2 F(000) = 576
Mr = 283.10 Dx = 1.550 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2790 reflections
a = 4.9046 (3) Å θ = 3.2–26.3°
b = 19.1113 (12) Å µ = 0.53 mm1
c = 12.9469 (9) Å T = 293 K
β = 91.565 (5)° Block, colorless
V = 1213.10 (14) Å3 0.21 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2464 independent reflections
Radiation source: fine-focus sealed tube 1679 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
ω scans θmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −5→6
Tmin = 0.814, Tmax = 0.847 k = −22→23
4654 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2769P] where P = (Fo2 + 2Fc2)/3
2464 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.43228 (17) 0.43978 (4) 0.09622 (7) 0.0649 (3)
Cl2 −0.28672 (16) 0.52357 (5) 0.38143 (7) 0.0679 (3)
O1 0.5843 (3) 0.68141 (9) 0.10167 (15) 0.0429 (5)
N1 0.1507 (4) 0.63974 (10) 0.09980 (16) 0.0345 (5)
H1A −0.0175 0.6482 0.0838 0.041*
C5 0.3496 (5) 0.68267 (12) 0.06671 (19) 0.0322 (6)
N2 0.2201 (4) 0.58266 (10) 0.15913 (16) 0.0342 (5)
O 0.4344 (4) 0.78012 (11) −0.04747 (17) 0.0591 (6)
C7 0.0788 (5) 0.47943 (13) 0.2441 (2) 0.0367 (6)
C4 0.2594 (5) 0.72916 (12) −0.0172 (2) 0.0341 (6)
C12 −0.0570 (5) 0.46354 (15) 0.3342 (2) 0.0452 (7)
C6 0.0226 (5) 0.54460 (13) 0.1877 (2) 0.0357 (6)
H6A −0.1564 0.5581 0.1729 0.043*
C3 0.0404 (5) 0.72915 (15) −0.0800 (2) 0.0464 (7)
H3A −0.1086 0.6993 −0.0761 0.056*
C11 −0.0117 (7) 0.40168 (19) 0.3879 (3) 0.0630 (9)
H11A −0.1082 0.3920 0.4471 0.076*
C8 0.2643 (5) 0.42899 (14) 0.2112 (2) 0.0440 (7)
C9 0.3144 (6) 0.36796 (16) 0.2651 (3) 0.0596 (9)
H9A 0.4412 0.3358 0.2418 0.071*
C1 0.3139 (6) 0.81122 (17) −0.1316 (3) 0.0603 (9)
H1B 0.3901 0.8477 −0.1686 0.072*
C10 0.1756 (7) 0.35512 (19) 0.3533 (3) 0.0698 (10)
H10A 0.2094 0.3141 0.3901 0.084*
C2 0.0749 (6) 0.78259 (17) −0.1535 (2) 0.0578 (8)
H2B −0.0466 0.7951 −0.2068 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0791 (6) 0.0484 (5) 0.0682 (6) 0.0052 (4) 0.0217 (4) −0.0113 (4)
Cl2 0.0658 (5) 0.0828 (7) 0.0559 (5) −0.0035 (4) 0.0182 (4) −0.0036 (5)
O1 0.0292 (9) 0.0457 (11) 0.0537 (12) −0.0007 (7) −0.0008 (8) 0.0043 (10)
N1 0.0292 (10) 0.0329 (11) 0.0413 (13) 0.0004 (8) 0.0004 (9) 0.0082 (11)
C5 0.0318 (12) 0.0296 (12) 0.0355 (14) 0.0012 (9) 0.0062 (10) −0.0048 (12)
N2 0.0384 (11) 0.0289 (10) 0.0352 (12) −0.0006 (9) −0.0006 (9) 0.0026 (10)
O 0.0528 (11) 0.0557 (13) 0.0682 (15) −0.0172 (9) −0.0062 (10) 0.0223 (12)
C7 0.0410 (13) 0.0336 (13) 0.0352 (14) −0.0083 (10) −0.0076 (11) 0.0036 (12)
C4 0.0382 (12) 0.0274 (12) 0.0371 (14) −0.0015 (10) 0.0076 (11) 0.0011 (12)
C12 0.0477 (15) 0.0479 (17) 0.0399 (16) −0.0100 (12) −0.0039 (12) 0.0042 (14)
C6 0.0349 (13) 0.0362 (13) 0.0359 (15) −0.0011 (10) −0.0002 (11) 0.0022 (12)
C3 0.0424 (14) 0.0544 (17) 0.0424 (16) −0.0126 (12) −0.0027 (12) 0.0150 (15)
C11 0.074 (2) 0.067 (2) 0.0473 (19) −0.0242 (18) −0.0090 (16) 0.0222 (18)
C8 0.0497 (15) 0.0348 (14) 0.0470 (17) −0.0055 (12) −0.0073 (13) 0.0009 (14)
C9 0.0660 (19) 0.0359 (16) 0.076 (2) 0.0018 (13) −0.0177 (17) 0.0025 (17)
C1 0.070 (2) 0.0499 (18) 0.061 (2) −0.0085 (15) 0.0033 (17) 0.0271 (18)
C10 0.085 (2) 0.051 (2) 0.072 (3) −0.0080 (17) −0.025 (2) 0.025 (2)
C2 0.0581 (18) 0.064 (2) 0.0505 (19) 0.0017 (15) −0.0056 (14) 0.0179 (18)

Geometric parameters (Å, º)

Cl1—C8 1.733 (3) C12—C11 1.387 (4)
Cl2—C12 1.731 (3) C6—H6A 0.9300
O1—C5 1.226 (3) C3—C2 1.410 (4)
N1—C5 1.353 (3) C3—H3A 0.9300
N1—N2 1.372 (3) C11—C10 1.363 (5)
N1—H1A 0.8600 C11—H11A 0.9300
C5—C4 1.463 (3) C8—C9 1.378 (4)
N2—C6 1.275 (3) C9—C10 1.367 (4)
O—C1 1.362 (4) C9—H9A 0.9300
O—C4 1.363 (3) C1—C2 1.318 (4)
C7—C12 1.392 (4) C1—H1B 0.9300
C7—C8 1.400 (4) C10—H10A 0.9300
C7—C6 1.466 (3) C2—H2B 0.9300
C4—C3 1.329 (4)
C5—N1—N2 119.29 (19) C4—C3—H3A 126.2
C5—N1—H1A 120.4 C2—C3—H3A 126.2
N2—N1—H1A 120.4 C10—C11—C12 119.4 (3)
O1—C5—N1 123.3 (2) C10—C11—H11A 120.3
O1—C5—C4 123.3 (2) C12—C11—H11A 120.3
N1—C5—C4 113.4 (2) C9—C8—C7 122.5 (3)
C6—N2—N1 115.94 (19) C9—C8—Cl1 117.0 (2)
C1—O—C4 106.2 (2) C7—C8—Cl1 120.5 (2)
C12—C7—C8 115.8 (2) C10—C9—C8 119.3 (3)
C12—C7—C6 121.0 (2) C10—C9—H9A 120.4
C8—C7—C6 123.3 (2) C8—C9—H9A 120.4
C3—C4—O 109.2 (2) C2—C1—O 110.8 (3)
C3—C4—C5 132.6 (2) C2—C1—H1B 124.6
O—C4—C5 117.9 (2) O—C1—H1B 124.6
C11—C12—C7 122.2 (3) C11—C10—C9 120.8 (3)
C11—C12—Cl2 119.0 (2) C11—C10—H10A 119.6
C7—C12—Cl2 118.8 (2) C9—C10—H10A 119.6
N2—C6—C7 119.7 (2) C1—C2—C3 106.1 (3)
N2—C6—H6A 120.2 C1—C2—H2B 126.9
C7—C6—H6A 120.2 C3—C2—H2B 126.9
C4—C3—C2 107.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 2.07 2.890 (2) 159

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6741).

References

  1. Bakir, M. & Gyles, C. (2003). J. Mol. Struct. 649, 133–135.
  2. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ohba, S. (1996). Acta Cryst. C52, 2118–2119.
  4. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201639X/hb6741sup1.cif

e-68-o1455-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201639X/hb6741Isup2.hkl

e-68-o1455-Isup2.hkl (121.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201639X/hb6741Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES