Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1457. doi: 10.1107/S1600536812016212

Ethyl 2-benzoyl-6-methyl­indolizine-7-carboxyl­ate

Shang-Tie Liao a,*
PMCID: PMC3344572  PMID: 22590334

Abstract

The title compound, C19H17NO3, was synthesized using a tandem annulation reaction between 4-benzoyl-1H-pyrrole-2-carbaldehyde and (E)-ethyl 4-bromo­but-2-enoate under mild conditions. The dihedral angle between the benzene ring and the indolizine ring system is 41.73 (4)°.

Related literature  

For background to indolizines, see:Ge et al. (2009a , 2011). For bond lengths and angles in related structures, see: Ge et al. (2009b ). For the synthesis of imidazo[1,2-a]pyridines via a tandem reaction, see: Jia et al. (2010).graphic file with name e-68-o1457-scheme1.jpg

Experimental  

Crystal data  

  • C19H17NO3

  • M r = 307.34

  • Monoclinic, Inline graphic

  • a = 8.177 (5) Å

  • b = 17.243 (5) Å

  • c = 11.191 (5) Å

  • β = 102.070 (5)°

  • V = 1543.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.14 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.983, T max = 0.990

  • 8583 measured reflections

  • 3150 independent reflections

  • 2434 reflections with I > 2σ(I)

  • R int = 0.124

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.166

  • S = 1.04

  • 3150 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016212/hg5204sup1.cif

e-68-o1457-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016212/hg5204Isup2.hkl

e-68-o1457-Isup2.hkl (151.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016212/hg5204Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thank Dr Qing Feng Wang, Taishan University, for the data collection.

supplementary crystallographic information

Comment

Indolizines have attracted considerable attention from medicinal and organic chemists because of the interesting similarities and diversions in structure to indole (Ge et al.; 2009a, 2011). Synthetic indolizines play important roles as calcium entry blockers, potential central nervous system depressants, 5-HT3 receptor antagonist, histamine H3 receptor antagonists, cardiovascular agents, and PLA2 inhibitors. They have also drawn much attention owing to their possible usage as dyes and chemosensors. The title indolizine (I) (Fig. 1) was synthesized in order to study its biological properties. (I) was screened for anticancer activities and found to be inactive. We report here the crystal structure of the title compound. In the title compound, C19H17NO3, all bond lengths and angles show normal values (Ge et al., 2009b). The dihedral angle between the benzene and indolizine rings is 41.73 (4)°.

Experimental

To a 50 ml round-bottomed flask were added 4-benzoyl-1H-pyrrole-2-carbaldehyde (1.00 mmol), (E)-ethyl 4-bromobut-2-enoate (2.00 mmol), potassium carbonate (0.28 g, 2.05 mmol) and dry DMF (10 ml). The mixture was stirred at room temperature for 8 h. The solvent was removed under reduced pressure and an product was isolated by column chromatography on silica gel (yield 76%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 10 d.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups),0.96 Å (for CH3 groups) and 0.93 Å (for aromatic protons), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

Crystal data

C19H17NO3 F(000) = 648
Mr = 307.34 Dx = 1.323 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2yn Cell parameters from 4026 reflections
a = 8.177 (5) Å θ = 2.4–28.4°
b = 17.243 (5) Å µ = 0.09 mm1
c = 11.191 (5) Å T = 293 K
β = 102.070 (5)° Block, yellow
V = 1543.0 (13) Å3 0.18 × 0.15 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3150 independent reflections
Radiation source: fine-focus sealed tube 2434 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.124
phi and ω scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.983, Tmax = 0.990 k = −17→21
8583 measured reflections l = −13→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0781P)2 + 0.2178P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3150 reflections Δρmax = 0.30 e Å3
211 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.023 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5745 (2) 0.16484 (10) 1.05807 (18) 0.0509 (5)
H1 0.6122 0.1859 0.9922 0.061*
C2 0.4798 (3) 0.09802 (12) 1.0431 (2) 0.0657 (6)
H2 0.4536 0.0743 0.9668 0.079*
C3 0.4235 (3) 0.06598 (12) 1.1396 (2) 0.0694 (7)
H3 0.3572 0.0217 1.1282 0.083*
C4 0.4657 (3) 0.09960 (13) 1.2523 (2) 0.0649 (6)
H4 0.4298 0.0773 1.3180 0.078*
C5 0.5610 (2) 0.16633 (11) 1.26986 (19) 0.0522 (5)
H5 0.5901 0.1884 1.3472 0.063*
C6 0.61349 (19) 0.20050 (9) 1.17163 (16) 0.0419 (4)
C7 0.7090 (2) 0.27484 (10) 1.19416 (16) 0.0430 (4)
C8 0.6858 (2) 0.33474 (9) 1.09863 (16) 0.0411 (4)
C9 0.5640 (2) 0.33689 (9) 0.99243 (17) 0.0430 (4)
H9 0.4831 0.2992 0.9663 0.052*
C10 0.7812 (2) 0.40322 (9) 1.10421 (16) 0.0432 (4)
H10 0.8712 0.4169 1.1662 0.052*
C11 0.71730 (19) 0.44609 (9) 1.00163 (15) 0.0397 (4)
C12 0.7536 (2) 0.51834 (9) 0.95286 (17) 0.0426 (4)
H12 0.8394 0.5488 0.9967 0.051*
C13 0.4925 (2) 0.43088 (10) 0.82315 (17) 0.0459 (4)
H13 0.4036 0.4015 0.7811 0.055*
C14 0.5288 (2) 0.49875 (10) 0.77489 (16) 0.0454 (4)
C15 0.6659 (2) 0.54404 (9) 0.84358 (16) 0.0432 (4)
C16 0.4222 (3) 0.52534 (12) 0.6562 (2) 0.0625 (6)
H16A 0.3335 0.4888 0.6298 0.094*
H16B 0.4894 0.5290 0.5955 0.094*
H16C 0.3756 0.5753 0.6672 0.094*
C17 0.7185 (2) 0.61723 (11) 0.79141 (19) 0.0533 (5)
C18 0.8515 (2) 0.73858 (11) 0.8309 (2) 0.0616 (6)
H18A 0.7597 0.7674 0.7816 0.074*
H18B 0.9315 0.7264 0.7807 0.074*
C19 0.9329 (3) 0.78540 (12) 0.9384 (3) 0.0786 (7)
H19A 0.8522 0.7980 0.9865 0.118*
H19B 0.9765 0.8323 0.9110 0.118*
H19C 1.0225 0.7561 0.9870 0.118*
N1 0.58336 (16) 0.40372 (7) 0.93311 (12) 0.0394 (4)
O1 0.80406 (17) 0.28578 (8) 1.29271 (13) 0.0604 (4)
O2 0.7043 (3) 0.62853 (11) 0.68326 (16) 0.0966 (7)
O3 0.78952 (16) 0.66744 (7) 0.87619 (13) 0.0533 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0701 (11) 0.0331 (8) 0.0482 (11) 0.0025 (8) 0.0096 (8) 0.0030 (8)
C2 0.0881 (14) 0.0369 (9) 0.0660 (14) −0.0047 (9) 0.0019 (11) −0.0014 (9)
C3 0.0727 (13) 0.0413 (10) 0.0886 (18) −0.0103 (9) 0.0041 (12) 0.0131 (11)
C4 0.0664 (12) 0.0542 (11) 0.0764 (15) −0.0043 (9) 0.0202 (11) 0.0244 (11)
C5 0.0586 (10) 0.0493 (10) 0.0496 (11) 0.0033 (8) 0.0135 (8) 0.0081 (9)
C6 0.0465 (8) 0.0341 (8) 0.0451 (10) 0.0052 (6) 0.0094 (7) 0.0063 (7)
C7 0.0478 (8) 0.0384 (8) 0.0428 (10) 0.0027 (7) 0.0097 (7) 0.0009 (7)
C8 0.0484 (8) 0.0303 (8) 0.0447 (10) 0.0021 (6) 0.0097 (7) −0.0028 (7)
C9 0.0485 (9) 0.0307 (8) 0.0493 (10) −0.0017 (6) 0.0094 (7) −0.0007 (7)
C10 0.0511 (9) 0.0346 (8) 0.0419 (10) −0.0017 (7) 0.0049 (7) −0.0040 (7)
C11 0.0457 (8) 0.0308 (8) 0.0424 (9) 0.0003 (6) 0.0088 (7) −0.0056 (7)
C12 0.0506 (9) 0.0307 (8) 0.0469 (10) −0.0021 (7) 0.0115 (7) −0.0046 (7)
C13 0.0497 (9) 0.0399 (9) 0.0450 (10) 0.0019 (7) 0.0026 (7) −0.0038 (8)
C14 0.0544 (9) 0.0392 (9) 0.0429 (10) 0.0078 (7) 0.0105 (7) −0.0032 (7)
C15 0.0534 (9) 0.0329 (8) 0.0460 (10) 0.0048 (7) 0.0163 (7) −0.0016 (7)
C16 0.0757 (13) 0.0548 (11) 0.0511 (12) 0.0037 (10) −0.0005 (10) 0.0053 (10)
C17 0.0625 (11) 0.0446 (10) 0.0538 (12) 0.0022 (8) 0.0146 (9) 0.0094 (9)
C18 0.0614 (11) 0.0425 (10) 0.0830 (16) −0.0018 (8) 0.0202 (10) 0.0214 (10)
C19 0.0987 (16) 0.0453 (11) 0.0980 (19) −0.0186 (12) 0.0344 (14) 0.0007 (12)
N1 0.0462 (7) 0.0303 (7) 0.0412 (8) 0.0017 (5) 0.0077 (6) −0.0027 (6)
O1 0.0713 (8) 0.0561 (8) 0.0481 (8) −0.0085 (6) −0.0003 (6) 0.0048 (6)
O2 0.1448 (16) 0.0845 (13) 0.0577 (11) −0.0378 (12) 0.0149 (10) 0.0161 (10)
O3 0.0681 (8) 0.0339 (6) 0.0612 (9) −0.0057 (5) 0.0208 (6) 0.0044 (6)

Geometric parameters (Å, º)

C1—C2 1.379 (3) C11—C12 1.416 (2)
C1—C6 1.388 (3) C12—C15 1.356 (2)
C1—H1 0.9300 C12—H12 0.9300
C2—C3 1.375 (3) C13—C14 1.348 (3)
C2—H2 0.9300 C13—N1 1.380 (2)
C3—C4 1.365 (4) C13—H13 0.9300
C3—H3 0.9300 C14—C15 1.448 (2)
C4—C5 1.381 (3) C14—C16 1.500 (3)
C4—H4 0.9300 C15—C17 1.491 (2)
C5—C6 1.392 (3) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.495 (2) C16—H16C 0.9600
C7—O1 1.224 (2) C17—O2 1.207 (3)
C7—C8 1.470 (2) C17—O3 1.326 (2)
C8—C9 1.382 (2) C18—O3 1.458 (2)
C8—C10 1.409 (2) C18—C19 1.485 (3)
C9—N1 1.356 (2) C18—H18A 0.9700
C9—H9 0.9300 C18—H18B 0.9700
C10—C11 1.373 (2) C19—H19A 0.9600
C10—H10 0.9300 C19—H19B 0.9600
C11—N1 1.404 (2) C19—H19C 0.9600
C2—C1—C6 119.8 (2) C11—C12—H12 119.3
C2—C1—H1 120.1 C14—C13—N1 121.98 (15)
C6—C1—H1 120.1 C14—C13—H13 119.0
C3—C2—C1 120.8 (2) N1—C13—H13 119.0
C3—C2—H2 119.6 C13—C14—C15 117.81 (16)
C1—C2—H2 119.6 C13—C14—C16 118.96 (16)
C4—C3—C2 119.6 (2) C15—C14—C16 123.17 (16)
C4—C3—H3 120.2 C12—C15—C14 120.47 (16)
C2—C3—H3 120.2 C12—C15—C17 119.22 (16)
C3—C4—C5 120.8 (2) C14—C15—C17 120.21 (16)
C3—C4—H4 119.6 C14—C16—H16A 109.5
C5—C4—H4 119.6 C14—C16—H16B 109.5
C4—C5—C6 119.9 (2) H16A—C16—H16B 109.5
C4—C5—H5 120.1 C14—C16—H16C 109.5
C6—C5—H5 120.1 H16A—C16—H16C 109.5
C1—C6—C5 119.08 (17) H16B—C16—H16C 109.5
C1—C6—C7 123.12 (16) O2—C17—O3 123.24 (18)
C5—C6—C7 117.79 (16) O2—C17—C15 123.64 (19)
O1—C7—C8 120.54 (16) O3—C17—C15 113.05 (17)
O1—C7—C6 119.69 (16) O3—C18—C19 107.76 (18)
C8—C7—C6 119.76 (14) O3—C18—H18A 110.2
C9—C8—C10 107.95 (15) C19—C18—H18A 110.2
C9—C8—C7 127.19 (15) O3—C18—H18B 110.2
C10—C8—C7 124.77 (15) C19—C18—H18B 110.2
N1—C9—C8 107.87 (14) H18A—C18—H18B 108.5
N1—C9—H9 126.1 C18—C19—H19A 109.5
C8—C9—H9 126.1 C18—C19—H19B 109.5
C11—C10—C8 107.68 (14) H19A—C19—H19B 109.5
C11—C10—H10 126.2 C18—C19—H19C 109.5
C8—C10—H10 126.2 H19A—C19—H19C 109.5
C10—C11—N1 107.06 (14) H19B—C19—H19C 109.5
C10—C11—C12 136.21 (15) C9—N1—C13 128.99 (14)
N1—C11—C12 116.74 (14) C9—N1—C11 109.44 (14)
C15—C12—C11 121.40 (15) C13—N1—C11 121.57 (14)
C15—C12—H12 119.3 C17—O3—C18 115.64 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5204).

References

  1. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ge, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070–1076.
  3. Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009a). Heterocycles, 78, 197–206.
  4. Ge, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009b). Heterocycles, 78, 725–736.
  5. Jia, J., Ge, Y. Q., Tao, X. T. & Wang, J. W. (2010). Heterocycles, 81, 185–194.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016212/hg5204sup1.cif

e-68-o1457-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016212/hg5204Isup2.hkl

e-68-o1457-Isup2.hkl (151.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016212/hg5204Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES