Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1461–o1462. doi: 10.1107/S160053681201611X

1-{(E)-[4-(4-Meth­oxy­phen­yl)butan-2-yl­idene]amino}-3-methyl­thio­urea

Ming-Yueh Tan a, Thahira Begum S A Ravoof a, Mohamed Ibrahim Mohamed Tahir a, Karen A Crouse a,, Edward R T Tiekink b,*
PMCID: PMC3344575  PMID: 22590337

Abstract

Two independent mol­ecules comprise the asymmetric unit of the title compound, C13H19N3OS, which differ in the conformations of the residues linking the thio­urea and the terminal benzene ring, as manifested in the Cm—Cm—Ca—Ca torsion angles [78.03 (16) and −93.64 (16)°, respectively; m = methyl­ene and a = aromatic]. The dihedral angles [84.40 (4) and 88.28 (5)°] formed between the thio­urea residue and the benzene ring indicate an almost orthogonal relationship. In each thio­urea residue, the N—H hydrogen atoms are anti, and the terminal N—H hydrogen atom forms an intra­molecular N—H⋯N hydrogen bond with the imine-N atom. In each case, the conformation about the imine C=N double bond [1.2812 (17) and 1.2801 (17) Å] is E. In the crystal, the mol­ecules are connected by N—H⋯S hydrogen bonds and these are connected into four mol­ecule aggregates via N—H⋯O hydrogen bonds, which are assembled into a two-dimensional array parallel to (011) via C—H⋯π and π–π inter­actions [ring centroid–centroid distance = 3.8344 (9) Å].

Related literature  

For background to chalcone thio­semicarbazides, see: Zhang et al. (2011). For background to hydrazinecarbodithio­ates, see: Khoo et al. (2005); Chan et al. (2008); Ravoof et al. (2010). For related syntheses, see: Tian et al. (1997); Tarafder et al. (2002).graphic file with name e-68-o1461-scheme1.jpg

Experimental  

Crystal data  

  • C13H19N3OS

  • M r = 265.37

  • Triclinic, Inline graphic

  • a = 9.6344 (4) Å

  • b = 11.1759 (6) Å

  • c = 13.4619 (8) Å

  • α = 80.324 (5)°

  • β = 87.103 (4)°

  • γ = 76.360 (4)°

  • V = 1388.48 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.01 mm−1

  • T = 100 K

  • 0.41 × 0.23 × 0.14 mm

Data collection  

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.51, T max = 0.75

  • 18287 measured reflections

  • 5312 independent reflections

  • 4995 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.101

  • S = 1.01

  • 5312 reflections

  • 343 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201611X/qm2063sup1.cif

e-68-o1461-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201611X/qm2063Isup2.hkl

e-68-o1461-Isup2.hkl (254.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201611X/qm2063Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N3 0.87 (1) 2.15 (1) 2.5931 (16) 111 (1)
N4—H4n⋯N6 0.87 (1) 2.13 (1) 2.5818 (17) 112 (1)
N2—H2n⋯S2 0.87 (1) 2.70 (1) 3.5686 (11) 176 (1)
N5—H5n⋯S1 0.88 (1) 2.65 (1) 3.5276 (11) 178 (1)
N1—H1n⋯O2i 0.87 (1) 2.51 (2) 3.0979 (16) 125 (1)
C1—H1BCg1ii 0.98 2.94 3.5930 (17) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support for the project came from Universiti Putra Malaysia (UPM) under their research University Grant Scheme (RUGS Nos. 9199834 and 9174000) and from the Malaysian Ministry of Science, Technology and Innovation (grant No. 09–02-04–0752-EA001). MYT wishes to thank UPM for a Graduate Research Fellowship award. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

To initiate comparative studies between hydrazinecarbothioamide Schiff bases (Zhang et al., 2011) and hydrazinecarbodithioate derivatives synthesized in our laboratory in on-going investigations (Khoo et al. 2005; Chan et al. 2008; Ravoof et al., 2010), the title compound was synthesized and characterized crystallographically.

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. As evidenced from the overlay diagram, Fig. 2, while the thiourea residues are super-imposable, minor conformational differences are seen in the links between these and the terminal benzene rings. Significant differences are noted between the chemically equivalent C5—C6—C7—C8 and C18—C19—C20—C21 torsion angles of 78.03 (16) and -93.64 (16)°, respectively. The dihedral angles formed between the thiourea residues (N1,C1,S1,N2 and N4,C15,S2,N5) and the benzene rings are 84.40 (4) and 88.28 (5)°, respectively. In each case, the methoxy group is co-planar with the benzene ring to which it is connected as seen in the values of the C13—O1—C10—C9 and C26—O2—C23—C22 torsion angles of 175.41 (12) and -5.62 (19)°, respectively. In each thiourea residue, the N—H hydrogen atoms are anti, and the terminal N—H hydrogen atom forms an intramolecular N—H···N hydrogen bond with the imine-N atom, Table 1. The conformation about the imine C═N double bond [N3═C3 = 1.2812 (17) Å and N6═C16 = 1.2801 (17) Å] is E in each case.

As indicated in Fig. 1, the independent molecules are connected by N—H···S hydrogen bonds leading to an eight-membered {···HNCS}2 synthon, Table 1. These are connected into four molecule aggregates via N—H···O hydrogen bonds, Table 1. The four molecule aggregates are assembled into a two-dimensional array parallel to (011) via C—H···π, Table 1, and π–π interactions occurring between the benzene rings [ring centroid(C7–C12)···centroid(C20–C25)i distance = 3.8344 (9) Å with a tilt angle = 2.08 (7)° for symmetry operation i: 1 + x, -1 + y, 1 + z). Layers stack without significant intermolecular interactions between them, Fig. 4.

Experimental

The title compound was synthesized following established literature procedures (Tian et al. 1997; Tarafder et al. 2002). To 4-methyl-3-thiosemicarbazide (1.05 g, 10 mmol) dissolved in hot absolute ethanol (25 ml) was added an equimolar amount of 4-(4-methoxyphenyl)butan-2-one (1.70 ml) also in hot absolute ethanol (20 ml). The mixture was stirred for about half an hour at ~340 K and then cooled to room temperature. The Schiff base precipitated was filtered and dried in vacuo over anhydrous silica gel. Colourless crystals were obtained after one week from a 1:1 mixture of 2-propanol and absolute ethanol. Yield 76%, M.pt. 356 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2 to 1.5Uequiv(C). The amino H-atoms were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the two independent molecules in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

An overlay diagram of two independent molecules in (I). The S1-containing molecule is illustrated in red and the S2-molecule in blue. Molecules have been aligned so that the N1,S1,N2 and N4,S2,N5 planes are overlapped.

Fig. 3.

Fig. 3.

A view of the supramolecular layer parallel to (011) in (I) mediated by N—H···S, N—H···O, C—H···π and π–π interactions shown as blue, orange, brown and purple dashed lines, respectively.

Fig. 4.

Fig. 4.

A view in projection down the a axis of the unit-cell contents for (I). The N—H···S, N—H···O, C—H···π and π–π interactions shown as blue, orange, brown and purple dashed lines, respectively.

Crystal data

C13H19N3OS Z = 4
Mr = 265.37 F(000) = 568
Triclinic, P1 Dx = 1.269 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54180 Å
a = 9.6344 (4) Å Cell parameters from 10673 reflections
b = 11.1759 (6) Å θ = 3–71°
c = 13.4619 (8) Å µ = 2.01 mm1
α = 80.324 (5)° T = 100 K
β = 87.103 (4)° Prism, colourless
γ = 76.360 (4)° 0.41 × 0.23 × 0.14 mm
V = 1388.48 (13) Å3

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer 5312 independent reflections
Radiation source: sealed X-ray tube 4995 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 16.1952 pixels mm-1 θmax = 71.6°, θmin = 3.3°
ω/2θ scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −13→13
Tmin = 0.51, Tmax = 0.75 l = −16→16
18287 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.065P)2 + 0.5168P] where P = (Fo2 + 2Fc2)/3
5312 reflections (Δ/σ)max = 0.001
343 parameters Δρmax = 0.29 e Å3
4 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20415 (3) 0.32321 (3) 0.48243 (2) 0.01907 (11)
O1 1.27782 (10) −0.24724 (9) 0.93804 (7) 0.0204 (2)
N1 0.34458 (12) 0.15989 (11) 0.63195 (9) 0.0183 (2)
H1N 0.4267 (12) 0.1245 (15) 0.6602 (12) 0.022*
N2 0.47979 (11) 0.26896 (10) 0.52508 (8) 0.0144 (2)
H2N 0.4854 (17) 0.3310 (12) 0.4776 (10) 0.017*
N3 0.59623 (11) 0.19555 (10) 0.57947 (8) 0.0145 (2)
C1 0.21511 (15) 0.11973 (14) 0.66758 (12) 0.0241 (3)
H1A 0.1413 0.1919 0.6817 0.036*
H1B 0.2356 0.0584 0.7293 0.036*
H1C 0.1813 0.0818 0.6157 0.036*
C2 0.34971 (14) 0.24605 (12) 0.55167 (10) 0.0147 (3)
C3 0.71806 (14) 0.22229 (12) 0.56058 (10) 0.0147 (3)
C4 0.74688 (14) 0.32895 (13) 0.48538 (10) 0.0182 (3)
H4A 0.7270 0.3172 0.4174 0.027*
H4B 0.8472 0.3322 0.4892 0.027*
H4C 0.6853 0.4072 0.5003 0.027*
C5 0.84347 (14) 0.13959 (13) 0.61947 (10) 0.0170 (3)
H5A 0.8808 0.1903 0.6607 0.020*
H5B 0.9199 0.1102 0.5713 0.020*
C6 0.81204 (14) 0.02645 (13) 0.68873 (11) 0.0206 (3)
H6A 0.7314 0.0545 0.7343 0.025*
H6B 0.7824 −0.0286 0.6476 0.025*
C7 0.93936 (14) −0.04719 (13) 0.75113 (10) 0.0174 (3)
C8 0.97580 (14) −0.00550 (13) 0.83614 (10) 0.0174 (3)
H8 0.9211 0.0709 0.8534 0.021*
C9 1.08986 (14) −0.07296 (13) 0.89598 (10) 0.0165 (3)
H9 1.1128 −0.0427 0.9535 0.020*
C10 1.17070 (14) −0.18502 (13) 0.87166 (10) 0.0164 (3)
C11 1.13875 (15) −0.22751 (13) 0.78626 (11) 0.0206 (3)
H11 1.1945 −0.3033 0.7685 0.025*
C12 1.02383 (16) −0.15758 (13) 0.72690 (11) 0.0209 (3)
H12 1.0028 −0.1864 0.6682 0.025*
C13 1.35572 (17) −0.36669 (14) 0.91966 (12) 0.0280 (3)
H13A 1.2909 −0.4232 0.9244 0.042*
H13B 1.4311 −0.4003 0.9699 0.042*
H13C 1.3988 −0.3588 0.8521 0.042*
S2 0.50040 (3) 0.51322 (3) 0.32073 (2) 0.01570 (10)
O2 −0.50895 (10) 0.90797 (9) −0.24093 (7) 0.0197 (2)
N4 0.35843 (12) 0.67030 (11) 0.16874 (9) 0.0175 (2)
H4N 0.2787 (13) 0.6966 (15) 0.1361 (12) 0.021*
N5 0.22689 (12) 0.55527 (10) 0.27342 (8) 0.0151 (2)
H5N 0.2193 (17) 0.4984 (13) 0.3255 (9) 0.018*
N6 0.11708 (12) 0.60815 (10) 0.20570 (8) 0.0156 (2)
C14 0.48459 (14) 0.71634 (14) 0.13471 (11) 0.0214 (3)
H14A 0.5147 0.7551 0.1875 0.032*
H14B 0.4623 0.7782 0.0735 0.032*
H14C 0.5618 0.6467 0.1202 0.032*
C15 0.35546 (14) 0.58411 (12) 0.24972 (10) 0.0140 (3)
C16 −0.00410 (14) 0.58042 (12) 0.22484 (10) 0.0152 (3)
C17 −0.04030 (15) 0.49618 (14) 0.31617 (11) 0.0209 (3)
H17A 0.0148 0.4107 0.3147 0.031*
H17B −0.1426 0.4982 0.3166 0.031*
H17C −0.0168 0.5244 0.3770 0.031*
C18 −0.11934 (14) 0.63481 (13) 0.14771 (10) 0.0181 (3)
H18A −0.1999 0.6888 0.1793 0.022*
H18B −0.1550 0.5657 0.1287 0.022*
C19 −0.07400 (15) 0.71084 (14) 0.05199 (11) 0.0225 (3)
H19A −0.0429 0.7827 0.0700 0.027*
H19B 0.0088 0.6584 0.0212 0.027*
C20 −0.19197 (14) 0.75844 (13) −0.02456 (10) 0.0189 (3)
C21 −0.20533 (16) 0.69260 (14) −0.10058 (12) 0.0241 (3)
H21 −0.1412 0.6142 −0.1027 0.029*
C22 −0.31004 (16) 0.73782 (13) −0.17421 (11) 0.0229 (3)
H22 −0.3162 0.6911 −0.2260 0.027*
C23 −0.40494 (14) 0.85161 (12) −0.17094 (10) 0.0161 (3)
C24 −0.39597 (14) 0.91792 (13) −0.09373 (10) 0.0166 (3)
H24 −0.4620 0.9952 −0.0905 0.020*
C25 −0.29074 (14) 0.87139 (13) −0.02154 (10) 0.0183 (3)
H25 −0.2858 0.9173 0.0310 0.022*
C26 −0.50890 (16) 0.84812 (14) −0.32718 (11) 0.0236 (3)
H26A −0.4153 0.8393 −0.3609 0.035*
H26B −0.5828 0.8987 −0.3740 0.035*
H26C −0.5286 0.7655 −0.3056 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01121 (17) 0.02285 (19) 0.01953 (19) −0.00212 (13) −0.00427 (12) 0.00540 (14)
O1 0.0189 (5) 0.0203 (5) 0.0185 (5) 0.0022 (4) −0.0064 (4) −0.0012 (4)
N1 0.0115 (5) 0.0217 (6) 0.0190 (6) −0.0038 (4) −0.0029 (4) 0.0054 (5)
N2 0.0122 (5) 0.0158 (6) 0.0133 (5) −0.0030 (4) −0.0032 (4) 0.0036 (4)
N3 0.0124 (5) 0.0160 (5) 0.0134 (5) −0.0012 (4) −0.0033 (4) 0.0007 (4)
C1 0.0135 (6) 0.0271 (8) 0.0276 (8) −0.0058 (6) −0.0012 (6) 0.0089 (6)
C2 0.0122 (6) 0.0166 (6) 0.0147 (6) −0.0021 (5) −0.0018 (5) −0.0020 (5)
C3 0.0131 (6) 0.0177 (6) 0.0130 (6) −0.0036 (5) −0.0012 (5) −0.0010 (5)
C4 0.0138 (6) 0.0226 (7) 0.0164 (6) −0.0055 (5) −0.0020 (5) 0.0046 (5)
C5 0.0120 (6) 0.0200 (7) 0.0171 (6) −0.0038 (5) −0.0024 (5) 0.0032 (5)
C6 0.0152 (6) 0.0220 (7) 0.0224 (7) −0.0057 (5) −0.0056 (5) 0.0060 (6)
C7 0.0139 (6) 0.0188 (7) 0.0176 (6) −0.0059 (5) −0.0019 (5) 0.0056 (5)
C8 0.0151 (6) 0.0160 (6) 0.0187 (7) −0.0024 (5) 0.0014 (5) 0.0019 (5)
C9 0.0165 (6) 0.0192 (7) 0.0136 (6) −0.0055 (5) −0.0002 (5) 0.0001 (5)
C10 0.0134 (6) 0.0197 (7) 0.0142 (6) −0.0039 (5) −0.0014 (5) 0.0031 (5)
C11 0.0221 (7) 0.0181 (7) 0.0192 (7) −0.0007 (5) −0.0024 (5) −0.0017 (5)
C12 0.0253 (7) 0.0209 (7) 0.0166 (7) −0.0060 (6) −0.0059 (6) −0.0003 (5)
C13 0.0268 (8) 0.0250 (8) 0.0263 (8) 0.0076 (6) −0.0089 (6) −0.0044 (6)
S2 0.01168 (16) 0.01806 (18) 0.01548 (17) −0.00205 (12) −0.00432 (12) 0.00184 (13)
O2 0.0198 (5) 0.0215 (5) 0.0161 (5) 0.0002 (4) −0.0070 (4) −0.0032 (4)
N4 0.0121 (5) 0.0198 (6) 0.0181 (6) −0.0039 (4) −0.0049 (4) 0.0057 (5)
N5 0.0121 (5) 0.0171 (6) 0.0139 (5) −0.0029 (4) −0.0038 (4) 0.0042 (4)
N6 0.0132 (5) 0.0169 (6) 0.0149 (5) −0.0021 (4) −0.0042 (4) 0.0014 (4)
C14 0.0158 (6) 0.0245 (7) 0.0231 (7) −0.0090 (6) −0.0034 (5) 0.0058 (6)
C15 0.0132 (6) 0.0136 (6) 0.0150 (6) −0.0018 (5) −0.0016 (5) −0.0032 (5)
C16 0.0134 (6) 0.0162 (6) 0.0151 (6) −0.0026 (5) −0.0014 (5) −0.0005 (5)
C17 0.0150 (6) 0.0270 (8) 0.0191 (7) −0.0076 (6) −0.0027 (5) 0.0051 (6)
C18 0.0138 (6) 0.0224 (7) 0.0176 (7) −0.0067 (5) −0.0030 (5) 0.0030 (5)
C19 0.0152 (6) 0.0299 (8) 0.0199 (7) −0.0077 (6) −0.0044 (5) 0.0077 (6)
C20 0.0147 (6) 0.0236 (7) 0.0165 (7) −0.0073 (5) −0.0010 (5) 0.0061 (5)
C21 0.0217 (7) 0.0197 (7) 0.0258 (7) 0.0027 (6) −0.0046 (6) 0.0015 (6)
C22 0.0256 (7) 0.0211 (7) 0.0211 (7) −0.0012 (6) −0.0049 (6) −0.0054 (6)
C23 0.0146 (6) 0.0181 (7) 0.0143 (6) −0.0050 (5) −0.0026 (5) 0.0031 (5)
C24 0.0153 (6) 0.0172 (7) 0.0157 (6) −0.0027 (5) 0.0002 (5) 0.0005 (5)
C25 0.0186 (6) 0.0248 (7) 0.0129 (6) −0.0095 (5) −0.0007 (5) −0.0009 (5)
C26 0.0269 (7) 0.0262 (8) 0.0181 (7) −0.0043 (6) −0.0084 (6) −0.0045 (6)

Geometric parameters (Å, º)

S1—C2 1.6943 (13) S2—C15 1.6881 (13)
O1—C10 1.3759 (16) O2—C23 1.3736 (16)
O1—C13 1.4236 (17) O2—C26 1.4341 (16)
N1—C2 1.3284 (18) N4—C15 1.3319 (18)
N1—C1 1.4556 (17) N4—C14 1.4530 (17)
N1—H1N 0.871 (9) N4—H4n 0.869 (9)
N2—C2 1.3563 (17) N5—C15 1.3616 (17)
N2—N3 1.3837 (15) N5—N6 1.3860 (15)
N2—H2N 0.870 (9) N5—H5n 0.875 (9)
N3—C3 1.2812 (17) N6—C16 1.2801 (17)
C1—H1A 0.9800 C14—H14A 0.9800
C1—H1B 0.9800 C14—H14B 0.9800
C1—H1C 0.9800 C14—H14C 0.9800
C3—C4 1.4983 (18) C16—C17 1.4974 (19)
C3—C5 1.5054 (17) C16—C18 1.5055 (17)
C4—H4A 0.9800 C17—H17A 0.9800
C4—H4B 0.9800 C17—H17B 0.9800
C4—H4C 0.9800 C17—H17C 0.9800
C5—C6 1.5217 (19) C18—C19 1.5242 (19)
C5—H5A 0.9900 C18—H18A 0.9900
C5—H5B 0.9900 C18—H18B 0.9900
C6—C7 1.5110 (18) C19—C20 1.5119 (18)
C6—H6A 0.9900 C19—H19A 0.9900
C6—H6B 0.9900 C19—H19B 0.9900
C7—C12 1.388 (2) C20—C21 1.384 (2)
C7—C8 1.395 (2) C20—C25 1.396 (2)
C8—C9 1.3855 (19) C21—C22 1.396 (2)
C8—H8 0.9500 C21—H21 0.9500
C9—C10 1.3908 (19) C22—C23 1.3863 (19)
C9—H9 0.9500 C22—H22 0.9500
C10—C11 1.3893 (19) C23—C24 1.3911 (19)
C11—C12 1.3952 (19) C24—C25 1.3870 (19)
C11—H11 0.9500 C24—H24 0.9500
C12—H12 0.9500 C25—H25 0.9500
C13—H13A 0.9800 C26—H26A 0.9800
C13—H13B 0.9800 C26—H26B 0.9800
C13—H13C 0.9800 C26—H26C 0.9800
C10—O1—C13 116.80 (11) C23—O2—C26 116.28 (10)
C2—N1—C1 123.67 (11) C15—N4—C14 123.68 (11)
C2—N1—H1N 114.8 (11) C15—N4—H4N 114.8 (11)
C1—N1—H1N 121.4 (11) C14—N4—H4N 121.5 (11)
C2—N2—N3 117.48 (11) C15—N5—N6 117.04 (11)
C2—N2—H2N 119.0 (11) C15—N5—H5N 119.8 (11)
N3—N2—H2N 123.5 (11) N6—N5—H5N 122.7 (11)
C3—N3—N2 118.22 (11) C16—N6—N5 118.43 (11)
N1—C1—H1A 109.5 N4—C14—H14A 109.5
N1—C1—H1B 109.5 N4—C14—H14B 109.5
H1A—C1—H1B 109.5 H14A—C14—H14B 109.5
N1—C1—H1C 109.5 N4—C14—H14C 109.5
H1A—C1—H1C 109.5 H14A—C14—H14C 109.5
H1B—C1—H1C 109.5 H14B—C14—H14C 109.5
N1—C2—N2 116.68 (11) N4—C15—N5 116.10 (11)
N1—C2—S1 123.03 (10) N4—C15—S2 123.13 (10)
N2—C2—S1 120.28 (10) N5—C15—S2 120.77 (10)
N3—C3—C4 125.83 (12) N6—C16—C17 125.70 (12)
N3—C3—C5 117.16 (11) N6—C16—C18 117.21 (11)
C4—C3—C5 117.01 (11) C17—C16—C18 117.07 (11)
C3—C4—H4A 109.5 C16—C17—H17A 109.5
C3—C4—H4B 109.5 C16—C17—H17B 109.5
H4A—C4—H4B 109.5 H17A—C17—H17B 109.5
C3—C4—H4C 109.5 C16—C17—H17C 109.5
H4A—C4—H4C 109.5 H17A—C17—H17C 109.5
H4B—C4—H4C 109.5 H17B—C17—H17C 109.5
C3—C5—C6 115.30 (11) C16—C18—C19 115.25 (11)
C3—C5—H5A 108.4 C16—C18—H18A 108.5
C6—C5—H5A 108.4 C19—C18—H18A 108.5
C3—C5—H5B 108.4 C16—C18—H18B 108.5
C6—C5—H5B 108.4 C19—C18—H18B 108.5
H5A—C5—H5B 107.5 H18A—C18—H18B 107.5
C7—C6—C5 112.58 (11) C20—C19—C18 112.97 (11)
C7—C6—H6A 109.1 C20—C19—H19A 109.0
C5—C6—H6A 109.1 C18—C19—H19A 109.0
C7—C6—H6B 109.1 C20—C19—H19B 109.0
C5—C6—H6B 109.1 C18—C19—H19B 109.0
H6A—C6—H6B 107.8 H19A—C19—H19B 107.8
C12—C7—C8 117.58 (12) C21—C20—C25 117.58 (12)
C12—C7—C6 121.97 (12) C21—C20—C19 121.45 (13)
C8—C7—C6 120.45 (12) C25—C20—C19 120.97 (13)
C9—C8—C7 121.52 (12) C20—C21—C22 122.09 (13)
C9—C8—H8 119.2 C20—C21—H21 119.0
C7—C8—H8 119.2 C22—C21—H21 119.0
C8—C9—C10 119.84 (12) C23—C22—C21 119.25 (13)
C8—C9—H9 120.1 C23—C22—H22 120.4
C10—C9—H9 120.1 C21—C22—H22 120.4
O1—C10—C11 124.80 (12) O2—C23—C22 124.70 (12)
O1—C10—C9 115.30 (12) O2—C23—C24 115.59 (12)
C11—C10—C9 119.89 (12) C22—C23—C24 119.69 (12)
C10—C11—C12 119.18 (13) C25—C24—C23 120.07 (12)
C10—C11—H11 120.4 C25—C24—H24 120.0
C12—C11—H11 120.4 C23—C24—H24 120.0
C7—C12—C11 121.94 (13) C24—C25—C20 121.28 (13)
C7—C12—H12 119.0 C24—C25—H25 119.4
C11—C12—H12 119.0 C20—C25—H25 119.4
O1—C13—H13A 109.5 O2—C26—H26A 109.5
O1—C13—H13B 109.5 O2—C26—H26B 109.5
H13A—C13—H13B 109.5 H26A—C26—H26B 109.5
O1—C13—H13C 109.5 O2—C26—H26C 109.5
H13A—C13—H13C 109.5 H26A—C26—H26C 109.5
H13B—C13—H13C 109.5 H26B—C26—H26C 109.5
C2—N2—N3—C3 −174.61 (11) C15—N5—N6—C16 178.41 (11)
C1—N1—C2—N2 −176.85 (13) C14—N4—C15—N5 177.38 (12)
C1—N1—C2—S1 1.81 (19) C14—N4—C15—S2 −2.45 (19)
N3—N2—C2—N1 4.06 (17) N6—N5—C15—N4 6.56 (17)
N3—N2—C2—S1 −174.64 (9) N6—N5—C15—S2 −173.61 (9)
N2—N3—C3—C4 1.38 (19) N5—N6—C16—C17 1.1 (2)
N2—N3—C3—C5 −178.93 (10) N5—N6—C16—C18 −177.38 (11)
N3—C3—C5—C6 5.04 (18) N6—C16—C18—C19 3.64 (18)
C4—C3—C5—C6 −175.24 (12) C17—C16—C18—C19 −174.98 (12)
C3—C5—C6—C7 −175.80 (11) C16—C18—C19—C20 177.51 (12)
C5—C6—C7—C12 −102.04 (15) C18—C19—C20—C21 −93.64 (16)
C5—C6—C7—C8 78.03 (16) C18—C19—C20—C25 87.00 (16)
C12—C7—C8—C9 −1.6 (2) C25—C20—C21—C22 2.1 (2)
C6—C7—C8—C9 178.36 (12) C19—C20—C21—C22 −177.31 (13)
C7—C8—C9—C10 −0.1 (2) C20—C21—C22—C23 −0.7 (2)
C13—O1—C10—C11 −3.41 (19) C26—O2—C23—C22 −5.62 (19)
C13—O1—C10—C9 175.41 (12) C26—O2—C23—C24 172.95 (12)
C8—C9—C10—O1 −177.48 (11) C21—C22—C23—O2 177.50 (13)
C8—C9—C10—C11 1.4 (2) C21—C22—C23—C24 −1.0 (2)
O1—C10—C11—C12 177.71 (12) O2—C23—C24—C25 −177.41 (11)
C9—C10—C11—C12 −1.1 (2) C22—C23—C24—C25 1.2 (2)
C8—C7—C12—C11 1.9 (2) C23—C24—C25—C20 0.2 (2)
C6—C7—C12—C11 −178.01 (13) C21—C20—C25—C24 −1.8 (2)
C10—C11—C12—C7 −0.6 (2) C19—C20—C25—C24 177.55 (12)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1n···N3 0.87 (1) 2.15 (1) 2.5931 (16) 111 (1)
N4—H4n···N6 0.87 (1) 2.13 (1) 2.5818 (17) 112 (1)
N2—H2n···S2 0.87 (1) 2.70 (1) 3.5686 (11) 176 (1)
N5—H5n···S1 0.88 (1) 2.65 (1) 3.5276 (11) 178 (1)
N1—H1n···O2i 0.87 (1) 2.51 (2) 3.0979 (16) 125 (1)
C1—H1B···Cg1ii 0.98 2.94 3.5930 (17) 125

Symmetry codes: (i) x+1, y−1, z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2063).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Chan, M.-E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model, 19, 557–559. [DOI] [PubMed]
  6. Khoo, T.-J., Cowley, A. R., Watkin, D. J., Crouse, K. A. & Tarafder, M. T. H. (2005). Acta Cryst. E61, o2441–o2443.
  7. Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem. 35, 871–876.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.
  10. Tian, Y.-P., Duan, C.-Y., Zhao, C.-Y., You, X.-Z., Mak, T. C. W. & Zhang, Z.-Y. (1997). Inorg. Chem. 36, 1247–1252. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201611X/qm2063sup1.cif

e-68-o1461-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201611X/qm2063Isup2.hkl

e-68-o1461-Isup2.hkl (254.8KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201611X/qm2063Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES