Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1467. doi: 10.1107/S1600536812016297

Methyl 5-bromo-2-hy­droxy­benzoate

Ghulam Mustafa a, Islam Ullah Khan a, Muhammad Zar Ashiq b, Mehmet Akkurt c,*
PMCID: PMC3344579  PMID: 22590341

Abstract

The title compound, C8H7BrO3, is almost planar (r.m.s. deviation for the non-H atoms = 0.055 Å). In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into C(6) chains propagating in [010]. Very weak aromatic π–π inter­actions [centroid–centroid distances = 3.984 (5) and 3.982 (5) Å] also occur.

Related literature  

For the crystal structure of the methyl 4-bromo-3-hy­droxy­benzoate isomer, see: Huang et al. (2011). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o1467-scheme1.jpg

Experimental  

Crystal data  

  • C8H7BrO3

  • M r = 231.04

  • Monoclinic, Inline graphic

  • a = 3.9829 (8) Å

  • b = 9.0950 (19) Å

  • c = 12.122 (3) Å

  • β = 95.162 (9)°

  • V = 437.33 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.66 mm−1

  • T = 296 K

  • 0.34 × 0.28 × 0.23 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.228, T max = 0.342

  • 3242 measured reflections

  • 1644 independent reflections

  • 1186 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.142

  • S = 1.06

  • 1644 reflections

  • 112 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.72 e Å−3

  • Absolute structure: Flack (1983), 687 Freidel pairs

  • Flack parameter: 0.07 (3)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812016297/hb6740sup1.cif

e-68-o1467-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016297/hb6740Isup2.hkl

e-68-o1467-Isup2.hkl (81KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016297/hb6740Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.25 3.065 (10) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for financial support.

supplementary crystallographic information

Comment

In the title compound (I), (Fig. 1), all bond lengths and angles are comparable with those of its isomer methyl 4-bromo-3-hydroxybenzoate (Huang et al., 2011). These isomers crystallize in the monoclinic P 21 (Z= 2) and P 21/c (Z=4) space groups, respectively.

Both these crystals have two different supramolecular O—H···O hydrogen-bond patterns. In the crystal, molecules are linked by O—H···O hydrogen bonds (Table 1), forming a zigzag chain of C(6) motifs (Bernstein et al., 1995) along the [010] and are further interlinked through very weak π-π stacking interactions [centroid-centroid distances = 3.984 (5) and 3.982 (5) Å] between the benzene rings, along the [1 0 0] axis (Table 1 and Fig. 2).

Experimental

The title compound was prepared by dissolving methy-5-bromo-2-hydroxybenzoic acid (1.0 g, 4.6 mmol) in DMF (10 ml) and n-hexane washed sodium hydride (0.22 g, 9.0 mmol). The whole mixture was astirred at room temperature for 45 min followed by the addition of methyl iodide (0.85 g, 5.9 mmol). The whole reaction mixture was stirred at room temprature till the completion of the reaction and poured into crushed ice in a beaker. The pH of the mixture was adjusted to 4.0 with 1 N HCl. Precipitates were produced, filtered and washed twice with distilled water and crystallized from chloroform solution as yellow-brown needles.

Refinement

All H atoms were positioned with idealized geometry and were refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) [O—H = 0.82 Å, C—H = 0.93 and 0.96 Å]. Four poorly fitted reflections (0 - 1 1), (-1 0 10), (0 1 1) and (1 6 3) were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the packing and hydrogen-bonding (dotted lines) of the title compound along the a axis.

Crystal data

C8H7BrO3 F(000) = 228
Mr = 231.04 Dx = 1.755 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1516 reflections
a = 3.9829 (8) Å θ = 2.8–24.2°
b = 9.0950 (19) Å µ = 4.66 mm1
c = 12.122 (3) Å T = 296 K
β = 95.162 (9)° Needle, yellow–brown
V = 437.33 (17) Å3 0.34 × 0.28 × 0.23 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 1644 independent reflections
Radiation source: sealed tube 1186 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
φ and ω scans θmax = 26.5°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −4→4
Tmin = 0.228, Tmax = 0.342 k = −11→11
3242 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0687P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1644 reflections Δρmax = 1.31 e Å3
112 parameters Δρmin = −0.72 e Å3
1 restraint Absolute structure: Flack (1983), 687 Freidel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.07 (3)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.1035 (2) 1.05024 (13) 0.06707 (7) 0.0606 (3)
O1 0.663 (2) 0.7888 (8) 0.4895 (6) 0.076 (3)
O2 0.4780 (15) 0.5536 (9) 0.3653 (4) 0.0601 (18)
O3 0.6181 (14) 0.5492 (9) 0.1924 (4) 0.0512 (18)
C1 0.759 (2) 0.8434 (8) 0.3920 (6) 0.035 (3)
C2 0.901 (2) 0.9860 (8) 0.3906 (7) 0.043 (3)
C3 0.9992 (16) 1.0454 (12) 0.2961 (6) 0.042 (2)
C4 0.966 (2) 0.9673 (8) 0.1995 (7) 0.039 (3)
C5 0.8380 (19) 0.8249 (8) 0.1976 (6) 0.037 (3)
C6 0.736 (2) 0.7643 (7) 0.2943 (6) 0.033 (2)
C7 0.594 (2) 0.6113 (8) 0.2910 (7) 0.039 (3)
C8 0.478 (3) 0.4012 (8) 0.1801 (8) 0.060 (4)
H1 0.64600 0.85650 0.53340 0.1140*
H2 0.92750 1.04020 0.45590 0.0520*
H3 1.08960 1.13970 0.29710 0.0510*
H5 0.82060 0.77090 0.13220 0.0440*
H8A 0.59580 0.33700 0.23330 0.0910*
H8B 0.50350 0.36590 0.10670 0.0910*
H8C 0.24340 0.40340 0.19220 0.0910*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0692 (6) 0.0456 (4) 0.0687 (6) −0.0185 (6) 0.0153 (4) 0.0107 (5)
O1 0.105 (6) 0.059 (4) 0.066 (4) 0.024 (4) 0.019 (4) 0.002 (3)
O2 0.096 (4) 0.034 (2) 0.054 (3) −0.004 (5) 0.027 (3) 0.009 (4)
O3 0.070 (4) 0.030 (2) 0.055 (3) −0.022 (4) 0.014 (2) −0.006 (4)
C1 0.035 (5) 0.031 (4) 0.038 (4) 0.009 (3) 0.001 (3) 0.006 (3)
C2 0.051 (5) 0.031 (4) 0.047 (5) 0.005 (4) −0.001 (4) −0.009 (3)
C3 0.040 (4) 0.024 (3) 0.061 (5) −0.004 (5) −0.003 (3) 0.007 (6)
C4 0.035 (4) 0.029 (4) 0.052 (5) 0.000 (3) 0.003 (4) 0.009 (3)
C5 0.039 (5) 0.024 (3) 0.046 (5) −0.001 (3) −0.001 (3) −0.001 (3)
C6 0.031 (4) 0.019 (3) 0.049 (5) 0.002 (3) 0.001 (3) 0.004 (3)
C7 0.039 (5) 0.028 (3) 0.050 (5) 0.003 (3) −0.003 (4) 0.003 (4)
C8 0.078 (7) 0.016 (4) 0.087 (7) −0.015 (4) 0.008 (5) −0.005 (4)

Geometric parameters (Å, º)

Br1—C4 1.899 (8) C4—C5 1.391 (10)
O1—C1 1.368 (10) C5—C6 1.389 (10)
O2—C7 1.173 (10) C6—C7 1.501 (10)
O3—C7 1.333 (10) C2—H2 0.9300
O3—C8 1.460 (11) C3—H3 0.9300
O1—H1 0.8200 C5—H5 0.9300
C1—C6 1.382 (10) C8—H8A 0.9600
C1—C2 1.416 (10) C8—H8B 0.9600
C2—C3 1.356 (11) C8—H8C 0.9600
C3—C4 1.366 (12)
C7—O3—C8 115.1 (7) O3—C7—C6 111.1 (7)
C1—O1—H1 109.00 O2—C7—O3 124.3 (8)
O1—C1—C6 123.3 (7) C1—C2—H2 119.00
C2—C1—C6 117.6 (7) C3—C2—H2 119.00
O1—C1—C2 119.1 (7) C2—C3—H3 120.00
C1—C2—C3 121.4 (8) C4—C3—H3 120.00
C2—C3—C4 120.3 (9) C4—C5—H5 120.00
Br1—C4—C5 119.3 (6) C6—C5—H5 120.00
C3—C4—C5 120.4 (8) O3—C8—H8A 109.00
Br1—C4—C3 120.4 (6) O3—C8—H8B 109.00
C4—C5—C6 119.3 (7) O3—C8—H8C 110.00
C1—C6—C7 120.1 (7) H8A—C8—H8B 109.00
C5—C6—C7 118.9 (7) H8A—C8—H8C 110.00
C1—C6—C5 121.0 (6) H8B—C8—H8C 110.00
O2—C7—C6 124.6 (8)
C8—O3—C7—C6 −178.4 (7) C2—C3—C4—C5 −1.4 (12)
C8—O3—C7—O2 1.8 (12) Br1—C4—C5—C6 −179.7 (6)
C6—C1—C2—C3 2.5 (12) C3—C4—C5—C6 1.7 (12)
O1—C1—C2—C3 −179.8 (8) C4—C5—C6—C7 179.2 (7)
C2—C1—C6—C5 −2.2 (12) C4—C5—C6—C1 0.2 (12)
C2—C1—C6—C7 178.8 (7) C1—C6—C7—O2 4.8 (13)
O1—C1—C6—C5 −179.8 (8) C5—C6—C7—O3 6.0 (10)
O1—C1—C6—C7 1.2 (12) C1—C6—C7—O3 −174.9 (7)
C1—C2—C3—C4 −0.7 (12) C5—C6—C7—O2 −174.2 (8)
C2—C3—C4—Br1 −180.0 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 2.25 3.065 (10) 170

Symmetry code: (i) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6740).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Huang, H.-R., Du, Z.-Y., Lu, Y.-J., Fang, Y.-X. & Zhang, K. (2011). Acta Cryst. E67, o115. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812016297/hb6740sup1.cif

e-68-o1467-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016297/hb6740Isup2.hkl

e-68-o1467-Isup2.hkl (81KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016297/hb6740Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES