Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1471. doi: 10.1107/S1600536812015000

Alternariol 9-O-methyl ether

Sreekanth Dasari a, Mohan Bhadbhade b, Brett A Neilan a,*
PMCID: PMC3344582  PMID: 22590344

Abstract

The title compound (AME; systematic name: 3,7-dihy­droxy-9-meth­oxy-1-methyl-6H-benzo[c]chromen-6-one), C15H12O5, was isolated from an endophytic fungi Alternaria sp., from Catharanthus roseus (common name: Madagascar periwinkle). There is an intramolecular O—H⋯O hydrogen bond in the essentially planar mol­ecule (r.m.s. deviation 0.02 Å). In the crystal, the molecule forms an O—H⋯O hydrogen bond with its centrosymmetric counterpart with four bridging inter­actions (two O—H⋯O and two C—H⋯O). The almost planar sheets of the dimeric units thus formed are stacked along b axis via C—H⋯π and π–π contacts [with C⋯C short contacts between aromatic moieties of 3.324 (3), 3.296 (3) and 3.374 (3) Å].

Related literature  

Species of the fungal genus Alternaria are known producers of mycotoxins and have previously been described as plant endophytes. For the isolation of Alternariol (AOH) and Alternariol 9-O-methyl ether (AME) see: An et al. (1989); Wen (2009); Ashour et al. (2011). For 1H, 13C and two-dimensional experimental data analysis see: Koch et al. (2005); Siegel et al. (2010). For the biological activity see: Aly et al. (2008).graphic file with name e-68-o1471-scheme1.jpg

Experimental  

Crystal data  

  • C15H12O5

  • M r = 272.25

  • Triclinic, Inline graphic

  • a = 7.1819 (7) Å

  • b = 8.9393 (8) Å

  • c = 10.2511 (10) Å

  • α = 105.296 (5)°

  • β = 105.174 (4)°

  • γ = 101.430 (4)°

  • V = 586.90 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 160 K

  • 0.29 × 0.13 × 0.06 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.967, T max = 0.993

  • 7824 measured reflections

  • 2062 independent reflections

  • 1718 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.096

  • S = 1.05

  • 2062 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015000/hg5207sup1.cif

e-68-o1471-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015000/hg5207Isup2.hkl

e-68-o1471-Isup2.hkl (101.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O4i 0.82 2.47 2.9371 (19) 117
C9—H9⋯O1ii 0.93 2.64 3.4645 (16) 148
C4—H4A⋯O2iii 0.93 2.32 3.2511 (16) 174
O4—H4⋯O3 0.82 1.84 2.5692 (13) 148
O1—H1⋯O3iii 0.82 2.14 2.9619 (13) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Australian Endeavour Fellowship Scheme (SD) and the Australian Research Council (BAN).

supplementary crystallographic information

Comment

The title compound was isolated from an endophytic Alternaria sp. from the host plant Catharanthus roseus. Alternariol 9-O-methyl ether is a mycotoxin often isolated from Alternaria sp.. It has been reported to exhibit mild antimicrobial activity (An et al., 1989; Wen 2009; Ashour et al., 2011), cytotoxicity and protein kinase inhibitory activity (Aly et al., 2008). 1H, 13C and two-dimensional NMR spectral data was reported previously (Koch et al., 2005; Siegel et al., 2010). Although mycotoxins have been studied extensively, the single-crystal structure of alternariol 9-O-methy ether is reported here for the first time.

An ORTEP view of the title compound (Fig. 1) shows an intramolecular O4—H4···O3 hydrogen bond. The two centrosymmetric partners make a total of four interactions - the two hydrogen bonds O1—H1···O3(iii) and C4—H4A···O2(iii) , ((iii) -x + 2, -y, -z + 1) are duplicated across the inversion centre. The hydrogen H4 also makes a short contact with O4 of another centrosymmetrically related molecule (O4—H4···O4(i), (i) -x + 2, -y + 1, -z + 2). The bridged centrosymmetric dimers translated along c axis make C9—H9···O1(ii), (ii) x, y + 1, z + 1 and O4—H4···O4(i) contacts (Table. 1 and Fig. 2). These almost planar sheets thus formed in ac plane are stacked along b axis; these make C—H···π contacts with the edge of the ring in one direction (C14—H14B···C9(iv) = 2.88 Å and C15—H15C···C1(iv) = 2.85 Å, (iv) 1 - x, 1 - y, 1 - z) and π–π contacts in the opposite direction with considerable overlap of aromatic moieties with values of short contact between C3···C8(v) = 3.324 (3) Å, C1···C6(v) = 3.296 (3) Å and C5···C12(v) = 3.374 (3) Å with (v) 1 - x, -y, 1 - z (Fig. 3).

Experimental

Alternaria sp. was isolated from Catharanthus roseus and cultured in malt extract media for production of secondary metabolites. The crude ethyl acetate extract was fractionated on silica gel with a stepwise gradient of hexane to ethyl acetate and to methanol to yield 12 fractions. Fractions 6 and 7, which were eluted with 2:1 and 1:1 hexane, ethyl acetate showed fine needle like crystals on slow evaporation. These fine needles were recrystallized using dichloromethane to yield plate like crystals for crystallographic analysis. The positive and negative ESI-MS analysis of the title compound exhibited molecular ion peak at m/z 273, attributing to [M+H]+ and at m/z 271, attributing to [M—H]- , respectively, infereing its molecular weight to be 272 g/mol which is in agreement with the previously reported values (Ashour et al., 2011).

Refinement

H atoms were positioned geometrically with C—H = 0.93 — 0.96 Å and O—H = 0.82 Å. Uiso(H) values were set at 1.2Ueq (aromatic) or 1.5Ueq of the parent atom (methyl group).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound showing an intra molecular O—H···O hydrogen bond.. (Thermal ellipsoids are drawn at 40% probability level).

Fig. 2.

Fig. 2.

Molecular association forming planar sheets in ac plane via network of O—H···O and C—H···O contacts. Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x, y + 1, z + 1; (iii) -x + 2, -y, -z + 1.

Fig. 3.

Fig. 3.

: Packing of molecules along b axis making C—H···π and π–π interactions. Symmetry codes: (iv) 1 - x, 1 - y, 1 - z; (v) 1 - x, -y, 1 - z.

Crystal data

C15H12O5 Z = 2
Mr = 272.25 F(000) = 284
Triclinic, P1 Dx = 1.541 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1819 (7) Å Cell parameters from 4112 reflections
b = 8.9393 (8) Å θ = 2.7–29.6°
c = 10.2511 (10) Å µ = 0.12 mm1
α = 105.296 (5)° T = 160 K
β = 105.174 (4)° Plates, colourless
γ = 101.430 (4)° 0.29 × 0.13 × 0.06 mm
V = 586.90 (10) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 2062 independent reflections
Radiation source: fine-focus sealed tube 1718 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ scans, and ω scans with κ offsets θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −8→8
Tmin = 0.967, Tmax = 0.993 k = −10→10
7824 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1544P] where P = (Fo2 + 2Fc2)/3
2062 reflections (Δ/σ)max < 0.001
184 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.65936 (15) −0.18780 (12) 0.08182 (10) 0.0292 (3)
H1 0.7594 −0.2138 0.1163 0.044*
O2 0.84646 (14) 0.13308 (12) 0.56397 (9) 0.0245 (3)
O3 0.96545 (14) 0.26527 (12) 0.79381 (10) 0.0267 (3)
O4 0.78595 (15) 0.45323 (13) 0.91399 (10) 0.0329 (3)
H4 0.8735 0.4077 0.9083 0.049*
O5 0.17885 (16) 0.48775 (13) 0.61731 (11) 0.0331 (3)
C1 0.4041 (2) 0.07774 (16) 0.25561 (14) 0.0202 (3)
C2 0.4514 (2) −0.03110 (16) 0.15399 (14) 0.0225 (3)
H2 0.3642 −0.0722 0.0598 0.027*
C3 0.6240 (2) −0.08085 (16) 0.18775 (14) 0.0219 (3)
C4 0.7533 (2) −0.02073 (16) 0.32735 (14) 0.0223 (3)
H4A 0.8701 −0.0517 0.3529 0.027*
C5 0.7053 (2) 0.08647 (16) 0.42815 (14) 0.0201 (3)
C6 0.8305 (2) 0.23648 (16) 0.67963 (14) 0.0208 (3)
C7 0.66319 (19) 0.30221 (15) 0.66141 (14) 0.0200 (3)
C8 0.6471 (2) 0.41025 (16) 0.78306 (14) 0.0232 (3)
C9 0.4878 (2) 0.47638 (16) 0.77364 (14) 0.0244 (3)
H9 0.4787 0.5483 0.8542 0.029*
C10 0.3421 (2) 0.43228 (16) 0.64067 (15) 0.0241 (3)
C11 0.3534 (2) 0.32476 (17) 0.51851 (14) 0.0249 (3)
H11 0.2522 0.2980 0.4311 0.030*
C12 0.5112 (2) 0.25710 (15) 0.52416 (14) 0.0197 (3)
C13 0.5353 (2) 0.14195 (16) 0.40140 (14) 0.0197 (3)
C14 0.2119 (2) 0.11934 (18) 0.20211 (14) 0.0267 (3)
H14A 0.1482 0.0608 0.1014 0.040*
H14B 0.2416 0.2335 0.2180 0.040*
H14C 0.1232 0.0903 0.2528 0.040*
C15 0.1611 (2) 0.60559 (18) 0.73528 (16) 0.0309 (4)
H15A 0.1602 0.5618 0.8112 0.046*
H15B 0.0380 0.6330 0.7045 0.046*
H15C 0.2733 0.7010 0.7693 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0335 (6) 0.0342 (6) 0.0220 (5) 0.0176 (5) 0.0108 (4) 0.0050 (4)
O2 0.0216 (5) 0.0295 (5) 0.0189 (5) 0.0119 (4) 0.0028 (4) 0.0029 (4)
O3 0.0210 (5) 0.0307 (6) 0.0217 (5) 0.0091 (4) 0.0008 (4) 0.0033 (4)
O4 0.0267 (6) 0.0418 (6) 0.0203 (5) 0.0153 (5) 0.0002 (4) −0.0020 (4)
O5 0.0346 (6) 0.0396 (6) 0.0266 (5) 0.0252 (5) 0.0080 (4) 0.0050 (5)
C1 0.0205 (7) 0.0210 (7) 0.0199 (7) 0.0052 (5) 0.0071 (5) 0.0084 (5)
C2 0.0224 (7) 0.0254 (7) 0.0178 (7) 0.0049 (6) 0.0046 (5) 0.0075 (6)
C3 0.0261 (7) 0.0211 (7) 0.0211 (7) 0.0070 (6) 0.0121 (6) 0.0071 (6)
C4 0.0204 (7) 0.0251 (7) 0.0245 (7) 0.0100 (6) 0.0086 (6) 0.0095 (6)
C5 0.0188 (7) 0.0223 (7) 0.0180 (7) 0.0049 (5) 0.0045 (5) 0.0069 (5)
C6 0.0188 (7) 0.0203 (7) 0.0204 (7) 0.0032 (5) 0.0055 (6) 0.0046 (6)
C7 0.0185 (7) 0.0194 (7) 0.0212 (7) 0.0041 (5) 0.0060 (6) 0.0067 (6)
C8 0.0216 (7) 0.0227 (7) 0.0203 (7) 0.0033 (6) 0.0039 (6) 0.0044 (6)
C9 0.0278 (8) 0.0215 (7) 0.0228 (7) 0.0090 (6) 0.0098 (6) 0.0031 (6)
C10 0.0239 (7) 0.0238 (7) 0.0278 (7) 0.0112 (6) 0.0090 (6) 0.0102 (6)
C11 0.0259 (7) 0.0282 (8) 0.0188 (7) 0.0123 (6) 0.0037 (6) 0.0055 (6)
C12 0.0198 (7) 0.0187 (7) 0.0205 (7) 0.0045 (5) 0.0064 (5) 0.0075 (6)
C13 0.0197 (7) 0.0200 (7) 0.0202 (7) 0.0054 (5) 0.0069 (5) 0.0080 (6)
C14 0.0243 (8) 0.0326 (8) 0.0191 (7) 0.0106 (6) 0.0037 (6) 0.0040 (6)
C15 0.0335 (8) 0.0301 (8) 0.0333 (8) 0.0185 (7) 0.0152 (7) 0.0065 (7)

Geometric parameters (Å, º)

O1—C3 1.3602 (16) C5—C13 1.3958 (19)
O1—H1 0.8200 C6—C7 1.4299 (19)
O2—C6 1.3446 (16) C7—C8 1.4090 (18)
O2—C5 1.3884 (15) C7—C12 1.4338 (18)
O3—C6 1.2344 (16) C8—C9 1.382 (2)
O4—C8 1.3486 (16) C9—C10 1.3835 (19)
O4—H4 0.8200 C9—H9 0.9300
O5—C10 1.3508 (17) C10—C11 1.3955 (19)
O5—C15 1.4317 (16) C11—C12 1.3819 (19)
C1—C2 1.3889 (19) C11—H11 0.9300
C1—C13 1.4305 (18) C12—C13 1.4743 (18)
C1—C14 1.5031 (19) C14—H14A 0.9600
C2—C3 1.3890 (19) C14—H14B 0.9600
C2—H2 0.9300 C14—H14C 0.9600
C3—C4 1.3784 (18) C15—H15A 0.9600
C4—C5 1.3785 (19) C15—H15B 0.9600
C4—H4A 0.9300 C15—H15C 0.9600
C3—O1—H1 109.5 C8—C9—C10 117.96 (12)
C6—O2—C5 122.41 (10) C8—C9—H9 121.0
C8—O4—H4 109.5 C10—C9—H9 121.0
C10—O5—C15 118.10 (11) O5—C10—C9 123.74 (12)
C2—C1—C13 119.78 (12) O5—C10—C11 114.42 (12)
C2—C1—C14 116.06 (11) C9—C10—C11 121.84 (12)
C13—C1—C14 124.16 (12) C12—C11—C10 121.63 (12)
C1—C2—C3 122.49 (12) C12—C11—H11 119.2
C1—C2—H2 118.8 C10—C11—H11 119.2
C3—C2—H2 118.8 C11—C12—C7 116.99 (12)
O1—C3—C4 122.22 (12) C11—C12—C13 125.49 (12)
O1—C3—C2 118.81 (12) C7—C12—C13 117.51 (12)
C4—C3—C2 118.97 (12) C5—C13—C1 114.81 (12)
C3—C4—C5 118.40 (12) C5—C13—C12 117.24 (12)
C3—C4—H4A 120.8 C1—C13—C12 127.96 (12)
C5—C4—H4A 120.8 C1—C14—H14A 109.5
C4—C5—O2 111.77 (11) C1—C14—H14B 109.5
C4—C5—C13 125.54 (12) H14A—C14—H14B 109.5
O2—C5—C13 122.68 (12) C1—C14—H14C 109.5
O3—C6—O2 115.38 (12) H14A—C14—H14C 109.5
O3—C6—C7 125.97 (12) H14B—C14—H14C 109.5
O2—C6—C7 118.65 (11) O5—C15—H15A 109.5
C8—C7—C6 118.38 (11) O5—C15—H15B 109.5
C8—C7—C12 120.11 (12) H15A—C15—H15B 109.5
C6—C7—C12 121.49 (12) O5—C15—H15C 109.5
O4—C8—C9 116.98 (12) H15A—C15—H15C 109.5
O4—C8—C7 121.56 (12) H15B—C15—H15C 109.5
C9—C8—C7 121.46 (12)
C13—C1—C2—C3 −0.4 (2) C15—O5—C10—C11 −176.59 (12)
C14—C1—C2—C3 −179.96 (13) C8—C9—C10—O5 179.73 (13)
C1—C2—C3—O1 −179.96 (12) C8—C9—C10—C11 −0.1 (2)
C1—C2—C3—C4 0.3 (2) O5—C10—C11—C12 179.96 (12)
O1—C3—C4—C5 −179.60 (12) C9—C10—C11—C12 −0.2 (2)
C2—C3—C4—C5 0.2 (2) C10—C11—C12—C7 0.1 (2)
C3—C4—C5—O2 178.48 (11) C10—C11—C12—C13 179.58 (12)
C3—C4—C5—C13 −0.5 (2) C8—C7—C12—C11 0.4 (2)
C6—O2—C5—C4 −179.66 (12) C6—C7—C12—C11 178.63 (12)
C6—O2—C5—C13 −0.6 (2) C8—C7—C12—C13 −179.21 (12)
C5—O2—C6—O3 179.01 (11) C6—C7—C12—C13 −0.93 (19)
C5—O2—C6—C7 −0.80 (19) C4—C5—C13—C1 0.4 (2)
O3—C6—C7—C8 0.1 (2) O2—C5—C13—C1 −178.50 (11)
O2—C6—C7—C8 179.88 (12) C4—C5—C13—C12 −179.87 (12)
O3—C6—C7—C12 −178.21 (13) O2—C5—C13—C12 1.2 (2)
O2—C6—C7—C12 1.6 (2) C2—C1—C13—C5 0.05 (19)
C6—C7—C8—O4 0.7 (2) C14—C1—C13—C5 179.61 (12)
C12—C7—C8—O4 179.02 (12) C2—C1—C13—C12 −179.65 (12)
C6—C7—C8—C9 −179.00 (13) C14—C1—C13—C12 −0.1 (2)
C12—C7—C8—C9 −0.7 (2) C11—C12—C13—C5 −179.96 (13)
O4—C8—C9—C10 −179.16 (12) C7—C12—C13—C5 −0.44 (19)
C7—C8—C9—C10 0.5 (2) C11—C12—C13—C1 −0.3 (2)
C15—O5—C10—C9 3.5 (2) C7—C12—C13—C1 179.25 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O4i 0.82 2.47 2.9371 (19) 117
C9—H9···O1ii 0.93 2.64 3.4645 (16) 148
C4—H4A···O2iii 0.93 2.32 3.2511 (16) 174
O4—H4···O3 0.82 1.84 2.5692 (13) 148
O1—H1···O3iii 0.82 2.14 2.9619 (13) 176

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x, y+1, z+1; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5207).

References

  1. Aly, H. A., Edrasa-Ebel, R., Indrani, D. I., Wray, V., Muller, G. E. W., Totzke, F., Zirrgiebel, U., Schachtele, C., Kubbutat, G. H. M., Lin, W. H., Proksch, P. & Ebel, R. (2008). J. Nat. Prod. 71, 972–980. [DOI] [PubMed]
  2. An, Y., Zhao, T., Miao, J., Liu, G., Zheng, Y., Xu, Y. & Van Etten, L. R. (1989). J. Agric. Food Chem. 37, 1341–1343.
  3. Ashour, M., Yehia, M. H. & Proksch, P. (2011). J. Nat. Prod. India, 4, 108–114.
  4. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Koch, K., Podlech, J., Pfeiffer, E. & Metzler, M. (2005). J. Org. Chem. 70, 3275–3276. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366. [DOI] [PMC free article] [PubMed]
  9. Wen, G. (2009). World J. Microbiol. Biotechnol. 25, 1677–1683.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015000/hg5207sup1.cif

e-68-o1471-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015000/hg5207Isup2.hkl

e-68-o1471-Isup2.hkl (101.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES