Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1495. doi: 10.1107/S1600536812015991

N-(4-Bromo­phen­yl)-2-[(1-cyclo­hexyl­meth­yl-1H-1,2,4-triazol-3-yl)sulfanyl]­acetamide

Yue-Ping Wang a, Wan-Lu Yan b,*, Qiong Guo b, Yan-Ping He b
PMCID: PMC3344604  PMID: 22590366

Abstract

The title compound, C17H21BrN4OS, was synthesized as a potential reverse transcriptase (RT) inhibitor of the human immunodeficiency virus type 1 (HIV-1). In the molecule, there is an N—H⋯S hydrogen bond making a five-membered ring. In the crystal, mol­ecules are connected into centrosymmetric dimers via pairs of N—H⋯N and weak C—H⋯N hydrogen bonds. The crystal structure also features C—H⋯O inter­actions.

Related literature  

The 1,2,4-triazole scaffold and its analogues are important pharmacophores that can be found in biologically active compounds across a number of different therapeutic areas, see: Lin et al. (2005); Naito et al. (1996); Sui et al. (1998); Tafi et al. (2002).graphic file with name e-68-o1495-scheme1.jpg

Experimental  

Crystal data  

  • C17H21BrN4OS

  • M r = 409.35

  • Triclinic, Inline graphic

  • a = 7.2061 (8) Å

  • b = 9.521 (1) Å

  • c = 14.2862 (16) Å

  • α = 104.132 (1)°

  • β = 90.804 (1)°

  • γ = 95.820 (1)°

  • V = 944.84 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 298 K

  • 0.25 × 0.16 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.597, T max = 0.770

  • 8793 measured reflections

  • 4076 independent reflections

  • 2644 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.092

  • S = 1.01

  • 4076 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015991/bq2348sup1.cif

e-68-o1495-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015991/bq2348Isup2.hkl

e-68-o1495-Isup2.hkl (199.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯S1 0.86 2.61 3.096 (2) 117
N4—H4⋯N1i 0.86 2.55 3.339 (3) 153
C1—H1⋯O1ii 0.93 2.29 3.214 (3) 171
C13—H13⋯N1i 0.93 2.48 3.342 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Fund for Fostering Talents of Kunming University of Science and Technology (grant No. 14118149) and the Natural Science Foundation of Yunnan Province (grant No. 619120090059 to YPW) and the Western Light Talent Culture Project of the Chinese Academy of Sciences (grant No. W8090303 to YPH).

supplementary crystallographic information

Comment

The 1,2,4-triazole scaffold and its analogues are important pharmacophores that can be found in biologically active compounds across a number of different therapeutic areas; these include antifungal (Tafi, et al., 2002), antibacterial (Sui, et al., 1998), antiasthmatic (Naito, et al., 1996) and anticancer activities (Lin, et al., 2005), etc. In the course of our search for new anti-HIV-1 agents, we have synthesized a new series of 1,2,4-triazole analogues, including the title compound, (I), as potential HIV-1 inhibitors.

The chemical structure of (I) is shown in Fig.1. The molecule is stabilized by a weak intramolecular N4—H4···S1 hydrogen bond (Table 1). The cyclohexyl ring adopts the lowest energy chair conformation. The torsion angle (C1—N3—C2—C3), which describes the arrangement between the cyclohexyl ring and the triazole moiety, is -112.1 (3) °; the torsion angle C12—N4—C11—O1, which characterizes the location of the CONH2 group relative to the phenyl ring, is 3.5 (4) °.

In the crystal structure, centrosymmetric dimmers are formed by pairs of N4—H4···N1i and C13—H13···N1i hydrogen bonds [symmetry code: (i) -x + 1, -y + 2,-z + 1]. These dimmers are further linked into chains by weak C—H···O interactions (Table 1, Fig.2).

Experimental

To a stirred solution of 2-((1H-1,2,4-triazol-3-yl)thio)-N-(4-bromophenyl)acetamide (3.12 g, 10 mmol) in anhydrous EtOH (75 ml) was added K2CO3 (1.38 g, 0.01 mol) under a nitrogen atmosphere. The mixture was stirred at 298 K for 15 min, then (bromomethyl)cyclohexane (0.53 g, 0.03 mol) was added, and the reaction mixture was refluxed for 8 h under a nitrogen atmosphere. The reaction mixture was poured into cold H2O (80 ml), then the aqueous phase was extracted with EtOAc (3×50 ml). The combined organic layer was washed with H2O (3×50 ml), dried (Mg2SO4), filtered and concentrated in vacuo to give the crude product, which was purified by chromatography (eluent EtOAc/PE 100:25) to afford the title compound (yield: 23%; m.p. 398.7–398.9 K). Single crystals of (I) suitable for X-ray diffraction were grown from a solution in EtOAc by slow evaporation. The product was characterized by IR, MS, 1H NMR and 13C NMR.

Refinement

All H atoms were placed in calculated positions with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom labeling scheme and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Intermolecular N—H···Ni, C—H···Ni, C—H···Oii hydrogen bond are shown as dashed lines [symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, 1 + y, z].

Crystal data

C17H21BrN4OS Z = 2
Mr = 409.35 F(000) = 420
Triclinic, P1 Dx = 1.439 Mg m3
Hall symbol: -P 1 Melting point: 398.8(1) K
a = 7.2061 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.521 (1) Å Cell parameters from 2212 reflections
c = 14.2862 (16) Å θ = 2.3–24.5°
α = 104.132 (1)° µ = 2.30 mm1
β = 90.804 (1)° T = 298 K
γ = 95.820 (1)° Block, colourless
V = 944.84 (18) Å3 0.25 × 0.16 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 4076 independent reflections
Radiation source: fine-focus sealed tube 2644 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
phi and ω scans θmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −9→8
Tmin = 0.597, Tmax = 0.770 k = −12→12
8793 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1448P] where P = (Fo2 + 2Fc2)/3
4076 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.07267 (5) 0.57798 (4) 0.86425 (2) 0.07787 (16)
N1 0.2679 (3) 1.0737 (2) 0.49703 (17) 0.0506 (6)
N2 0.1739 (3) 0.9382 (2) 0.60131 (15) 0.0444 (5)
N3 0.1580 (3) 1.0832 (2) 0.64012 (16) 0.0461 (5)
N4 0.4730 (3) 0.6839 (2) 0.59376 (15) 0.0434 (5)
H4 0.5020 0.7572 0.5696 0.052*
O1 0.2434 (3) 0.5032 (2) 0.59473 (15) 0.0683 (6)
S1 0.28308 (9) 0.78377 (7) 0.42896 (5) 0.04868 (18)
C1 0.2140 (4) 1.1586 (3) 0.5772 (2) 0.0532 (7)
H1 0.2151 1.2590 0.5881 0.064*
C2 0.0908 (4) 1.1312 (3) 0.7364 (2) 0.0557 (7)
H2A −0.0288 1.0766 0.7404 0.067*
H2B 0.0714 1.2333 0.7483 0.067*
C3 0.2247 (4) 1.1117 (3) 0.81422 (19) 0.0537 (7)
H3 0.2486 1.0092 0.7988 0.064*
C4 0.4098 (4) 1.2034 (4) 0.8179 (2) 0.0726 (9)
H4A 0.3883 1.3049 0.8277 0.087*
H4B 0.4685 1.1743 0.7565 0.087*
C5 0.5408 (5) 1.1879 (5) 0.8986 (3) 0.0958 (12)
H5A 0.5750 1.0892 0.8847 0.115*
H5B 0.6540 1.2537 0.9016 0.115*
C6 0.4501 (7) 1.2220 (5) 0.9949 (3) 0.1066 (14)
H6A 0.5329 1.2047 1.0440 0.128*
H6B 0.4294 1.3241 1.0124 0.128*
C7 0.2675 (6) 1.1298 (5) 0.9914 (2) 0.0935 (12)
H7A 0.2096 1.1578 1.0531 0.112*
H7B 0.2901 1.0285 0.9808 0.112*
C8 0.1356 (5) 1.1455 (4) 0.9123 (2) 0.0755 (9)
H8A 0.1012 1.2442 0.9268 0.091*
H8B 0.0227 1.0797 0.9098 0.091*
C9 0.2392 (3) 0.9403 (3) 0.51580 (18) 0.0405 (6)
C10 0.1917 (4) 0.6457 (3) 0.48677 (19) 0.0465 (6)
H10A 0.0761 0.6752 0.5154 0.056*
H10B 0.1590 0.5573 0.4363 0.056*
C11 0.3064 (4) 0.6054 (3) 0.56361 (19) 0.0435 (6)
C12 0.6046 (3) 0.6588 (2) 0.66041 (17) 0.0397 (6)
C13 0.7805 (3) 0.7356 (3) 0.66796 (18) 0.0449 (6)
H13 0.8052 0.8042 0.6320 0.054*
C14 0.9196 (4) 0.7118 (3) 0.72794 (19) 0.0494 (6)
H14 1.0376 0.7631 0.7319 0.059*
C15 0.8817 (4) 0.6118 (3) 0.78159 (18) 0.0487 (6)
C16 0.7086 (4) 0.5367 (3) 0.7767 (2) 0.0575 (7)
H16 0.6845 0.4700 0.8141 0.069*
C17 0.5691 (4) 0.5594 (3) 0.71644 (19) 0.0548 (7)
H17 0.4513 0.5082 0.7134 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0771 (3) 0.0900 (3) 0.0738 (2) 0.01971 (19) −0.02021 (18) 0.03131 (19)
N1 0.0502 (13) 0.0471 (13) 0.0616 (15) −0.0016 (11) −0.0049 (11) 0.0299 (12)
N2 0.0453 (12) 0.0378 (12) 0.0519 (13) 0.0023 (10) −0.0001 (10) 0.0156 (10)
N3 0.0460 (13) 0.0382 (12) 0.0539 (14) 0.0033 (10) −0.0043 (10) 0.0119 (10)
N4 0.0402 (12) 0.0394 (11) 0.0550 (13) 0.0011 (10) −0.0018 (10) 0.0217 (10)
O1 0.0601 (13) 0.0535 (12) 0.0978 (16) −0.0140 (10) −0.0139 (11) 0.0406 (12)
S1 0.0452 (4) 0.0554 (4) 0.0474 (4) 0.0041 (3) 0.0001 (3) 0.0172 (3)
C1 0.0509 (16) 0.0387 (15) 0.074 (2) 0.0001 (13) −0.0130 (15) 0.0247 (15)
C2 0.0510 (17) 0.0502 (16) 0.0640 (19) 0.0086 (13) 0.0011 (14) 0.0091 (14)
C3 0.0556 (17) 0.0485 (16) 0.0580 (17) 0.0070 (13) 0.0034 (14) 0.0145 (13)
C4 0.060 (2) 0.087 (2) 0.074 (2) −0.0060 (18) −0.0076 (16) 0.0336 (18)
C5 0.070 (2) 0.128 (3) 0.098 (3) −0.007 (2) −0.025 (2) 0.051 (3)
C6 0.123 (4) 0.119 (3) 0.076 (3) 0.001 (3) −0.031 (3) 0.026 (2)
C7 0.126 (4) 0.105 (3) 0.056 (2) 0.026 (3) 0.008 (2) 0.027 (2)
C8 0.083 (2) 0.078 (2) 0.066 (2) 0.0134 (19) 0.0163 (19) 0.0176 (18)
C9 0.0322 (13) 0.0427 (14) 0.0492 (15) −0.0013 (11) −0.0073 (11) 0.0191 (12)
C10 0.0425 (15) 0.0378 (14) 0.0566 (16) −0.0001 (11) −0.0033 (12) 0.0087 (12)
C11 0.0409 (15) 0.0342 (13) 0.0544 (16) 0.0046 (11) 0.0007 (12) 0.0086 (12)
C12 0.0415 (14) 0.0355 (13) 0.0446 (14) 0.0055 (11) 0.0020 (11) 0.0141 (11)
C13 0.0465 (15) 0.0410 (14) 0.0498 (15) −0.0022 (12) −0.0011 (12) 0.0192 (12)
C14 0.0428 (15) 0.0464 (15) 0.0581 (17) −0.0043 (12) −0.0051 (13) 0.0153 (13)
C15 0.0555 (17) 0.0498 (16) 0.0436 (15) 0.0113 (14) −0.0053 (12) 0.0149 (12)
C16 0.0617 (19) 0.0613 (18) 0.0582 (18) −0.0004 (15) 0.0003 (15) 0.0343 (15)
C17 0.0482 (16) 0.0591 (17) 0.0623 (18) −0.0054 (14) 0.0002 (14) 0.0298 (15)

Geometric parameters (Å, º)

Br1—C15 1.903 (2) C5—H5A 0.9700
N1—C1 1.319 (3) C5—H5B 0.9700
N1—C9 1.357 (3) C6—C7 1.499 (5)
N2—C9 1.319 (3) C6—H6A 0.9700
N2—N3 1.373 (3) C6—H6B 0.9700
N3—C1 1.324 (3) C7—C8 1.512 (5)
N3—C2 1.447 (3) C7—H7A 0.9700
N4—C11 1.353 (3) C7—H7B 0.9700
N4—C12 1.412 (3) C8—H8A 0.9700
N4—H4 0.8600 C8—H8B 0.9700
O1—C11 1.215 (3) C10—C11 1.510 (3)
S1—C9 1.750 (3) C10—H10A 0.9700
S1—C10 1.793 (3) C10—H10B 0.9700
C1—H1 0.9300 C12—C13 1.387 (3)
C2—C3 1.519 (4) C12—C17 1.388 (3)
C2—H2A 0.9700 C13—C14 1.381 (3)
C2—H2B 0.9700 C13—H13 0.9300
C3—C4 1.512 (4) C14—C15 1.371 (4)
C3—C8 1.525 (4) C14—H14 0.9300
C3—H3 0.9800 C15—C16 1.365 (4)
C4—C5 1.525 (4) C16—C17 1.382 (4)
C4—H4A 0.9700 C16—H16 0.9300
C4—H4B 0.9700 C17—H17 0.9300
C5—C6 1.508 (5)
C1—N1—C9 101.8 (2) C6—C7—C8 112.0 (3)
C9—N2—N3 101.66 (19) C6—C7—H7A 109.2
C1—N3—N2 109.2 (2) C8—C7—H7A 109.2
C1—N3—C2 130.5 (2) C6—C7—H7B 109.2
N2—N3—C2 120.3 (2) C8—C7—H7B 109.2
C11—N4—C12 127.3 (2) H7A—C7—H7B 107.9
C11—N4—H4 116.4 C7—C8—C3 111.3 (3)
C12—N4—H4 116.4 C7—C8—H8A 109.4
C9—S1—C10 100.22 (12) C3—C8—H8A 109.4
N1—C1—N3 111.7 (2) C7—C8—H8B 109.4
N1—C1—H1 124.1 C3—C8—H8B 109.4
N3—C1—H1 124.1 H8A—C8—H8B 108.0
N3—C2—C3 112.8 (2) N2—C9—N1 115.6 (2)
N3—C2—H2A 109.0 N2—C9—S1 123.67 (18)
C3—C2—H2A 109.0 N1—C9—S1 120.7 (2)
N3—C2—H2B 109.0 C11—C10—S1 120.69 (18)
C3—C2—H2B 109.0 C11—C10—H10A 107.2
H2A—C2—H2B 107.8 S1—C10—H10A 107.2
C4—C3—C2 112.2 (2) C11—C10—H10B 107.2
C4—C3—C8 110.8 (3) S1—C10—H10B 107.2
C2—C3—C8 110.2 (2) H10A—C10—H10B 106.8
C4—C3—H3 107.8 O1—C11—N4 123.6 (2)
C2—C3—H3 107.8 O1—C11—C10 117.7 (2)
C8—C3—H3 107.8 N4—C11—C10 118.6 (2)
C3—C4—C5 111.9 (3) C13—C12—C17 118.6 (2)
C3—C4—H4A 109.2 C13—C12—N4 117.6 (2)
C5—C4—H4A 109.2 C17—C12—N4 123.8 (2)
C3—C4—H4B 109.2 C14—C13—C12 121.1 (2)
C5—C4—H4B 109.2 C14—C13—H13 119.5
H4A—C4—H4B 107.9 C12—C13—H13 119.5
C6—C5—C4 111.2 (3) C15—C14—C13 119.2 (2)
C6—C5—H5A 109.4 C15—C14—H14 120.4
C4—C5—H5A 109.4 C13—C14—H14 120.4
C6—C5—H5B 109.4 C16—C15—C14 120.8 (2)
C4—C5—H5B 109.4 C16—C15—Br1 119.7 (2)
H5A—C5—H5B 108.0 C14—C15—Br1 119.5 (2)
C7—C6—C5 111.2 (3) C15—C16—C17 120.3 (2)
C7—C6—H6A 109.4 C15—C16—H16 119.9
C5—C6—H6A 109.4 C17—C16—H16 119.9
C7—C6—H6B 109.4 C16—C17—C12 120.0 (3)
C5—C6—H6B 109.4 C16—C17—H17 120.0
H6A—C6—H6B 108.0 C12—C17—H17 120.0
C9—N2—N3—C1 −0.3 (3) C1—N1—C9—S1 178.04 (18)
C9—N2—N3—C2 −179.5 (2) C10—S1—C9—N2 6.0 (2)
C9—N1—C1—N3 0.4 (3) C10—S1—C9—N1 −172.49 (19)
N2—N3—C1—N1 −0.1 (3) C9—S1—C10—C11 −81.3 (2)
C2—N3—C1—N1 179.1 (2) C12—N4—C11—O1 3.5 (4)
C1—N3—C2—C3 −112.1 (3) C12—N4—C11—C10 −176.2 (2)
N2—N3—C2—C3 67.0 (3) S1—C10—C11—O1 −174.2 (2)
N3—C2—C3—C4 63.3 (3) S1—C10—C11—N4 5.5 (3)
N3—C2—C3—C8 −172.7 (2) C11—N4—C12—C13 168.5 (2)
C2—C3—C4—C5 177.8 (3) C11—N4—C12—C17 −9.8 (4)
C8—C3—C4—C5 54.1 (4) C17—C12—C13—C14 1.6 (4)
C3—C4—C5—C6 −54.9 (4) N4—C12—C13—C14 −176.8 (2)
C4—C5—C6—C7 55.1 (5) C12—C13—C14—C15 −0.8 (4)
C5—C6—C7—C8 −55.9 (5) C13—C14—C15—C16 −0.4 (4)
C6—C7—C8—C3 55.4 (4) C13—C14—C15—Br1 179.86 (19)
C4—C3—C8—C7 −54.1 (4) C14—C15—C16—C17 0.7 (4)
C2—C3—C8—C7 −178.8 (3) Br1—C15—C16—C17 −179.5 (2)
N3—N2—C9—N1 0.5 (3) C15—C16—C17—C12 0.1 (4)
N3—N2—C9—S1 −178.05 (16) C13—C12—C17—C16 −1.3 (4)
C1—N1—C9—N2 −0.6 (3) N4—C12—C17—C16 177.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4···S1 0.86 2.61 3.096 (2) 117
N4—H4···N1i 0.86 2.55 3.339 (3) 153
C1—H1···O1ii 0.93 2.29 3.214 (3) 171
C13—H13···N1i 0.93 2.48 3.342 (3) 153

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2348).

References

  1. Bruker (1998). SMART, SAINT and SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Lin, R.-H., Connolly, P. J., Huang, S.-L., Wetter, S. K., Lu, Y.-H., Murray, W. V., Emanuel, S. L., Gruninger, R. H., Fuentes-Pesquera, A. R., Rugg, C. A., Middleton, S. A. & Jolliffe, L. K. (2005). J. Med. Chem. 48, 4208–4211. [DOI] [PubMed]
  3. Naito, Y., Akahoshi, F., Takeda, S., Okada, T., Kajii, M., Nishimura, H., Sugiura, M., Fukaya, C. & Kagitani, Y. (1996). J. Med. Chem. 39, 3019–3029. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sui, Z.-H., Guan, J.-H., Hlasta, D. J., Macielag, M. J., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C. & Barrett, J. F. (1998). Bioorg. Med. Chem. Lett. 8, 1929–1934. [DOI] [PubMed]
  6. Tafi, A., Costi, R., Botta, M., Santo, R. D., Corelli, F., Massa, S., Ciacci, A., Manetti, F. & Artico, M. (2002). J. Med. Chem. 45, 2720–2732. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812015991/bq2348sup1.cif

e-68-o1495-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812015991/bq2348Isup2.hkl

e-68-o1495-Isup2.hkl (199.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES