Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 21;68(Pt 5):o1500. doi: 10.1107/S160053681200952X

2,4-Diiodo-3-nitro­anisole

Xianfei Li a, Lei Cao b, Chuansheng Ruan c, Baoming Ji d, Le Zhou a,*
PMCID: PMC3344609  PMID: 22590371

Abstract

In the title compound (systematic name: 1,3-diiodo-4-meth­oxy-2-nitro­benzene), C7H5I2NO3, the dihedral angle between the benzene ring and the nitro group is 88.0 (3)°, and the methyl group lies almost in the same plane as the ring [deviation = 0.034 (6) Å]. In the crystal, aromatic π–π stacking occurs between inversion-related rings [centroid–centroid separation = 3.865 (3) Å and slippage = 0.642 Å]. A possible weak C—I⋯π inter­action occurs [I⋯π = 3.701 (2) Å and C—I⋯π = 130.18 (13)°], but there are no significant inter­molecular I⋯I contacts.

Related literature  

For the crystal structures of isomers of the title compound, see: Garden et al. (2002, 2004).graphic file with name e-68-o1500-scheme1.jpg

Experimental  

Crystal data  

  • C7H5I2NO3

  • M r = 404.92

  • Monoclinic, Inline graphic

  • a = 9.264 (2) Å

  • b = 8.756 (2) Å

  • c = 13.549 (3) Å

  • β = 108.835 (2)°

  • V = 1040.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.02 mm−1

  • T = 296 K

  • 0.36 × 0.33 × 0.14 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.220, T max = 0.486

  • 7459 measured reflections

  • 1937 independent reflections

  • 1712 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.065

  • S = 1.00

  • 2689 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200952X/hb6662sup1.cif

e-68-o1500-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200952X/hb6662Isup2.hkl

e-68-o1500-Isup2.hkl (95.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200952X/hb6662Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21072089)

supplementary crystallographic information

Comment

We report here the molecular and supramolecular structures of the title compound, (I), which is isomeric with 2,6-diiodo-4-nitroanisole (Garden etal., 2002) and 2,4-diiodo-6-nitroanisole (Garden et al., 2003). The changed position of iodo, nitro and methoxy may lead to different interactions such as iodo-nitro interactions, and aromatic π···π stacking interactions.

The asymmetric unit of the title compound comprise a whole molecule of 2,4-diiodo-3-nitroanisole (Fig. 1). Atoms I1, I2, C7 and O3 are almost coplanar with the benzene ring. On the contrary, the plane defined by the nitro group is almost perpendicular to the plane of the aromatic ring and form a dihedral angle of 88.0 (4)°. In contrast with 2,6-diiodo-4-nitroanisole (Garden et al., 2002) and 2,4-diiodo-6-nitroanisole (Garden et al., 2003), there is no iodo-nitro interaction in the compound, each molecule link three others by π···π stacking interaction and C—I···π interaction, leading to the formation of a sheet (Fig. 2). The aryl ring planes (centroid Cg1) of two molecules are parallel, show a π···π stacking interaction Cg1···Cg1viii [symmetry codes: (viii) 1 - x, 2 - y, -z), and the centroid distance is 3.865 (3) Å. C—I···π interaction also occurs in the compound, I1 aim to the phenyl ring [I1···Cg1ix 3.701 (2) Å, C2—I1···Cg1ix 130.1 (1)°; symmetry code: (ix) 1 - x, 1/2 + y, 1/2 - z].

Experimental

The title compound was obtained from 2-iodo-3-nitrophenol, a solution of 2-iodo-3-nitrophenol (2 mmol) in acetone (20 ml) was added K2CO3 (5 mmol). The mixture was stirred at room temperature for 30 min, then CH3I (5 mmol) was added at once. The resulting solution was then stirred at 343 K for 3 h. The addition of ice (20 g) prompted the precipitation of the title compound, which was collected by filtration and crystallized from ethyl acetate as yellow blocks (yield 90%, m.p. 406–408 K).

Refinement

All H atoms were located from difference maps and were treated as riding atoms with C—H distances of 0.93 Å (aromatic) and 0.96 Å (methyl).

Figures

Fig. 1.

Fig. 1.

The moleuclar sturcture of (I) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, showing formation of a sheet built from π···π stacking interactions, and C—I···π interactions.

Crystal data

C7H5I2NO3 F(000) = 736
Mr = 404.92 Dx = 2.586 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.264 (2) Å Cell parameters from 3452 reflections
b = 8.756 (2) Å θ = 2.8–27.0°
c = 13.549 (3) Å µ = 6.02 mm1
β = 108.835 (2)° T = 296 K
V = 1040.2 (4) Å3 Block, yellow
Z = 4 0.36 × 0.33 × 0.14 mm

Data collection

Bruker SMART CCD diffractometer 1937 independent reflections
Radiation source: fine-focus sealed tube 1712 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
phi and ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −11→11
Tmin = 0.220, Tmax = 0.486 k = −10→10
7459 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0264P)2 + 3.0364P] where P = (Fo2 + 2Fc2)/3
2689 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 1.06 e Å3
0 restraints Δρmin = −1.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3646 (5) 0.8010 (5) 0.0510 (3) 0.0431 (10)
C2 0.4466 (5) 0.8963 (5) 0.1324 (3) 0.0391 (9)
C3 0.6036 (5) 0.9031 (5) 0.1575 (3) 0.0405 (9)
C4 0.6821 (5) 0.8208 (6) 0.1041 (3) 0.0465 (11)
C5 0.5990 (6) 0.7285 (6) 0.0233 (3) 0.0519 (12)
H5 0.6490 0.6724 −0.0141 0.062*
C6 0.4412 (6) 0.7182 (6) −0.0030 (3) 0.0488 (11)
H6 0.3870 0.6549 −0.0574 0.059*
C7 0.1252 (6) 0.7011 (7) −0.0503 (4) 0.0659 (15)
H7A 0.1457 0.7238 −0.1138 0.099*
H7B 0.0185 0.7152 −0.0607 0.099*
H7C 0.1529 0.5971 −0.0306 0.099*
N1 0.6918 (5) 1.0000 (5) 0.2475 (3) 0.0507 (10)
O1 0.7319 (6) 0.9427 (5) 0.3316 (3) 0.0860 (14)
O2 0.7193 (5) 1.1291 (5) 0.2286 (3) 0.0831 (13)
O3 0.2116 (4) 0.8002 (4) 0.0299 (2) 0.0571 (9)
I1 0.33063 (4) 1.02858 (4) 0.21050 (3) 0.05654 (12)
I2 0.91883 (4) 0.82973 (6) 0.14145 (3) 0.08415 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.048 (2) 0.046 (2) 0.034 (2) −0.002 (2) 0.0103 (18) 0.0012 (19)
C2 0.047 (2) 0.037 (2) 0.034 (2) 0.0034 (19) 0.0143 (18) 0.0028 (18)
C3 0.048 (2) 0.039 (2) 0.032 (2) −0.0018 (19) 0.0096 (18) 0.0047 (18)
C4 0.044 (2) 0.056 (3) 0.041 (2) 0.007 (2) 0.0163 (19) 0.009 (2)
C5 0.067 (3) 0.054 (3) 0.040 (2) 0.009 (2) 0.024 (2) −0.002 (2)
C6 0.062 (3) 0.049 (3) 0.033 (2) 0.000 (2) 0.011 (2) −0.0057 (19)
C7 0.054 (3) 0.093 (4) 0.046 (3) −0.021 (3) 0.009 (2) −0.017 (3)
N1 0.050 (2) 0.056 (3) 0.043 (2) −0.0101 (19) 0.0105 (18) 0.0048 (18)
O1 0.119 (4) 0.081 (3) 0.039 (2) −0.024 (3) −0.001 (2) 0.005 (2)
O2 0.105 (3) 0.064 (3) 0.065 (2) −0.034 (2) 0.007 (2) 0.000 (2)
O3 0.0453 (18) 0.070 (2) 0.0505 (19) −0.0050 (16) 0.0083 (15) −0.0121 (17)
I1 0.0635 (2) 0.0536 (2) 0.0582 (2) 0.00317 (16) 0.02756 (16) −0.01141 (15)
I2 0.0470 (2) 0.1373 (4) 0.0684 (3) 0.0114 (2) 0.01898 (18) −0.0001 (2)

Geometric parameters (Å, º)

C1—O3 1.353 (5) C5—C6 1.391 (7)
C1—C6 1.378 (6) C5—H5 0.9300
C1—C2 1.396 (6) C6—H6 0.9300
C2—C3 1.384 (6) C7—O3 1.419 (6)
C2—I1 2.086 (4) C7—H7A 0.9600
C3—C4 1.382 (6) C7—H7B 0.9600
C3—N1 1.493 (6) C7—H7C 0.9600
C4—C5 1.379 (7) N1—O1 1.189 (5)
C4—I2 2.087 (5) N1—O2 1.205 (5)
O3—C1—C6 124.7 (4) C6—C5—H5 119.6
O3—C1—C2 115.9 (4) C1—C6—C5 120.6 (4)
C6—C1—C2 119.4 (4) C1—C6—H6 119.7
C3—C2—C1 118.7 (4) C5—C6—H6 119.7
C3—C2—I1 121.6 (3) O3—C7—H7A 109.5
C1—C2—I1 119.6 (3) O3—C7—H7B 109.5
C4—C3—C2 122.5 (4) H7A—C7—H7B 109.5
C4—C3—N1 118.9 (4) O3—C7—H7C 109.5
C2—C3—N1 118.6 (4) H7A—C7—H7C 109.5
C5—C4—C3 117.9 (4) H7B—C7—H7C 109.5
C5—C4—I2 119.2 (3) O1—N1—O2 125.2 (4)
C3—C4—I2 122.9 (3) O1—N1—C3 117.6 (4)
C4—C5—C6 120.8 (4) O2—N1—C3 117.2 (4)
C4—C5—H5 119.6 C1—O3—C7 117.3 (4)
O3—C1—C2—C3 −179.6 (4) C3—C4—C5—C6 −0.4 (7)
C6—C1—C2—C3 −1.0 (6) I2—C4—C5—C6 179.2 (4)
O3—C1—C2—I1 −1.1 (5) O3—C1—C6—C5 178.8 (4)
C6—C1—C2—I1 177.5 (3) C2—C1—C6—C5 0.3 (7)
C1—C2—C3—C4 1.0 (6) C4—C5—C6—C1 0.4 (7)
I1—C2—C3—C4 −177.5 (3) C4—C3—N1—O1 −90.3 (6)
C1—C2—C3—N1 −177.4 (4) C2—C3—N1—O1 88.1 (6)
I1—C2—C3—N1 4.2 (5) C4—C3—N1—O2 88.1 (6)
C2—C3—C4—C5 −0.3 (7) C2—C3—N1—O2 −93.5 (5)
N1—C3—C4—C5 178.0 (4) C6—C1—O3—C7 3.3 (7)
C2—C3—C4—I2 −179.9 (3) C2—C1—O3—C7 −178.2 (4)
N1—C3—C4—I2 −1.5 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6662).

References

  1. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Garden, S. J., Cunha, F. R. da, Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o12–o14. [DOI] [PubMed]
  3. Garden, S. J., Cunha, F. R. da, Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o463–o466. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681200952X/hb6662sup1.cif

e-68-o1500-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681200952X/hb6662Isup2.hkl

e-68-o1500-Isup2.hkl (95.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681200952X/hb6662Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES