Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 25;68(Pt 5):o1508–o1509. doi: 10.1107/S1600536812016194

11-(4-Meth­oxy­phen­yl)-3,3-dimethyl-2,3,4,5,10,11-hexa­hydro-1H-dibenzo[b,e][1,4]diazepin-1-one monohydrate

Olatomide A Fadare a, Pius O Adelani b, Adebomi A Ikotun c, Craig A Obafemi a,*
PMCID: PMC3344616  PMID: 22590378

Abstract

In the title compound, C22H24N2O2·H2O, the co-crystallized water mol­ecule inter­acts with the N and O atoms of the mol­ecule through Ow—H⋯N, Ow—H⋯O(meth­yl) and N—H⋯Ow hydrogen-bonding inter­actions. These hydrogen bonds, along with the inter­molecular N—H⋯O=C hydrogen-bonding inter­actions, connect the mol­ecules into a three-dimensional network. The dihedral angle between the two aromatic rings is 65.46 (10)°.

Related literature  

For details of the synthesis, see: Hanze et al. (1963); Rashed et al. (1993); Kolos et al. (2004); Cortés et al. (2007); Ajani et al. (2010). For the biological activity of dibenzo[b,e][1,4]diazepinones, see: Beccalli et al. (2005); Farnet et al. (2005); Joergensen et al. (1996); McAlpine et al. (2008); McGowan et al. (2009).graphic file with name e-68-o1508-scheme1.jpg

Experimental  

Crystal data  

  • C22H24N2O2·H2O

  • M r = 366.45

  • Monoclinic, Inline graphic

  • a = 10.684 (7) Å

  • b = 16.973 (12) Å

  • c = 11.174 (8) Å

  • β = 101.490 (9)°

  • V = 1986 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.04 × 0.02 × 0.01 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.244, T max = 0.323

  • 22692 measured reflections

  • 4529 independent reflections

  • 2187 reflections with I > 2σ(I)

  • R int = 0.087

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.106

  • S = 0.83

  • 4529 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016194/ff2060sup1.cif

e-68-o1508-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016194/ff2060Isup2.hkl

e-68-o1508-Isup2.hkl (221.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016194/ff2060Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.86 2.14 2.994 (3) 170
O1W—H1B⋯N2ii 0.98 (3) 2.04 (3) 3.020 (3) 178.2 (14)
O1W—H1C⋯O2 0.99 (2) 1.85 (2) 2.832 (3) 170 (2)
N2—H2C⋯O1iii 0.949 (18) 2.099 (18) 3.047 (3) 177.4 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Central Science Laboratory, Obafemi Awolowo University, Ile-ife, for supporting this study.

supplementary crystallographic information

Comment

Dibenzo[b,e][1,4]diazepinones are useful intermediates in the synthesis of pharmaceuticals. For example, dibenzo[b,e][1,4]diazepin-11-ones are useful intermediates in the preparation of dibenzo[1,4]diazepines (Hanze et al., 1963). They display wide variety of biological properties, including antidepressant (Beccalli et al., 2005), antimicrobial (Farnet et al., 2005), analgesic and anti-inflammatory (Joergensen et al., 1996), antitumor (McAlpine et al., 2008) activities, while the dibenzodiazepin-1-ones are hepatitis C virus (HCV) NS5B polymerase inhibitors (McGowan et al., 2009). In view of our interest in bioactivity of nitrogen-containing heterocyclic compounds (see: Ajani et al., 2010), we report here the microwave-assisted synthesis and the crystal structure of the title compound 1.

Experimental

A mixture of dimedone (2.0 g, 14.3 mmol) and o-phenylenediamine (1.54 g, 14.3 mmol) in absolute ethanol (30 ml), containing acetic acid (0.5 ml), in a beaker was pulse irradiated in a microwave oven for 5 min. and left to stand at room temperature for 1 h. Anisaldehyde (1.95 g, 14.3 mmol) was added to the reaction mixture and then subjected to microwave irradiation for 5 min. (TLC monitored). Evaporation of the solvent afforded a gummy product. Cold aqueous ethanol was added with scratching to give yellow precipitate (melting point 202–205 o C). Crystals of 1 suitable for X-ray analysis were obtained by slow evaporation of ethanol solution of the product.

Refinement

The H atoms of the water molecule were located on a Fourier difference map, restrained by DFIX command 0.85 for O—H distances and by DFIX 1.39 for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(O). Other atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the labelled atoms; thermal ellipsoids are drawn at the 20% probability level.

Fig. 2.

Fig. 2.

The packing diagram (ball and stick model) of the title compound, viewed along c-direction. Hydrogen bonds are drawn as dashed lines.

Fig. 3.

Fig. 3.

Reaction scheme of synthesis of the title compound.

Crystal data

C22H24N2O2·H2O F(000) = 784
Mr = 366.45 Dx = 1.226 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2566 reflections
a = 10.684 (7) Å θ = 2.2–21.4°
b = 16.973 (12) Å µ = 0.08 mm1
c = 11.174 (8) Å T = 296 K
β = 101.490 (9)° Rectangular tablet, light yellow
V = 1986 (2) Å3 0.04 × 0.02 × 0.01 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4529 independent reflections
Radiation source: fine-focus sealed tube 2187 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.087
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −13→13
Tmin = 0.244, Tmax = 0.323 k = −21→22
22692 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0442P)2] where P = (Fo2 + 2Fc2)/3
S = 0.83 (Δ/σ)max < 0.001
4529 reflections Δρmax = 0.19 e Å3
257 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0082 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.69308 (13) −0.00644 (8) 0.04879 (12) 0.0381 (4)
H1A 0.6703 −0.0509 0.0142 0.046*
N2 0.68575 (13) 0.12181 (9) 0.21811 (13) 0.0341 (4)
H2C 0.6841 (17) 0.1561 (10) 0.2848 (17) 0.053 (6)*
O1 0.68552 (12) 0.26436 (7) −0.07109 (11) 0.0459 (4)
O2 1.28931 (13) 0.17001 (10) 0.27104 (13) 0.0787 (5)
O1W 1.41964 (16) 0.15384 (8) 0.07513 (13) 0.0520 (4)
H1C 1.371 (2) 0.1659 (14) 0.140 (2) 0.104 (9)*
H1B 1.506 (3) 0.1427 (15) 0.120 (2) 0.124 (11)*
C1 0.66212 (16) 0.19349 (11) −0.09321 (15) 0.0346 (4)
C2 0.59266 (18) 0.16858 (11) −0.21814 (15) 0.0425 (5)
H2A 0.6057 0.2081 −0.2772 0.051*
H2B 0.5019 0.1661 −0.2186 0.051*
C3 0.63682 (17) 0.08909 (11) −0.25676 (15) 0.0401 (5)
C4 0.61823 (18) 0.03053 (10) −0.15837 (15) 0.0398 (5)
H4A 0.5275 0.0210 −0.1658 0.048*
H4B 0.6577 −0.0190 −0.1732 0.048*
C5 0.67258 (15) 0.05645 (10) −0.02950 (15) 0.0318 (4)
C6 0.69591 (15) 0.13400 (10) 0.00061 (15) 0.0307 (4)
C7 0.77701 (19) 0.09265 (13) −0.26960 (18) 0.0574 (6)
H7A 0.8292 0.1086 −0.1933 0.086*
H7B 0.7859 0.1300 −0.3318 0.086*
H7C 0.8036 0.0416 −0.2917 0.086*
C8 0.5557 (2) 0.06348 (13) −0.37901 (17) 0.0596 (6)
H8A 0.4676 0.0610 −0.3724 0.089*
H8B 0.5832 0.0125 −0.4005 0.089*
H8C 0.5655 0.1009 −0.4410 0.089*
C9 0.74429 (16) −0.01265 (10) 0.17528 (15) 0.0361 (4)
C10 0.74023 (16) 0.04797 (10) 0.25838 (15) 0.0349 (4)
C11 0.74741 (16) 0.16327 (10) 0.12753 (15) 0.0322 (4)
H11A 0.7198 0.2183 0.1283 0.039*
C12 0.79555 (19) −0.08505 (11) 0.21730 (17) 0.0506 (5)
H12A 0.7985 −0.1254 0.1617 0.061*
C13 0.8421 (2) −0.09834 (13) 0.33978 (19) 0.0606 (6)
H13A 0.8757 −0.1473 0.3666 0.073*
C14 0.8386 (2) −0.03852 (13) 0.42190 (18) 0.0567 (6)
H14A 0.8694 −0.0469 0.5048 0.068*
C15 0.78916 (18) 0.03402 (11) 0.38124 (16) 0.0451 (5)
H15A 0.7886 0.0744 0.4374 0.054*
C16 0.89251 (16) 0.16503 (10) 0.16580 (15) 0.0319 (4)
C17 0.94955 (17) 0.19550 (11) 0.27789 (16) 0.0423 (5)
H17A 0.8978 0.2149 0.3290 0.051*
C18 1.08113 (18) 0.19834 (11) 0.31741 (17) 0.0439 (5)
H18A 1.1167 0.2191 0.3936 0.053*
C19 1.15759 (18) 0.17016 (13) 0.24243 (18) 0.0508 (5)
C20 1.1030 (2) 0.14011 (16) 0.1304 (2) 0.0809 (9)
H20A 1.1548 0.1213 0.0791 0.097*
C21 0.97209 (19) 0.13747 (14) 0.09301 (18) 0.0625 (7)
H21A 0.9370 0.1166 0.0168 0.075*
C22 1.35131 (19) 0.19213 (14) 0.38866 (18) 0.0643 (7)
H22A 1.4421 0.1892 0.3946 0.096*
H22B 1.3265 0.1572 0.4474 0.096*
H22C 1.3278 0.2451 0.4046 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0504 (10) 0.0309 (9) 0.0314 (9) −0.0015 (7) 0.0045 (7) −0.0035 (7)
N2 0.0364 (9) 0.0381 (9) 0.0299 (8) −0.0002 (7) 0.0113 (7) −0.0040 (7)
O1 0.0576 (9) 0.0375 (8) 0.0420 (8) −0.0038 (7) 0.0082 (6) 0.0037 (6)
O2 0.0309 (8) 0.1414 (15) 0.0598 (11) 0.0007 (9) −0.0007 (7) −0.0285 (10)
O1W 0.0470 (9) 0.0548 (9) 0.0536 (10) −0.0013 (7) 0.0083 (8) −0.0027 (7)
C1 0.0310 (10) 0.0394 (11) 0.0342 (11) −0.0007 (8) 0.0083 (8) 0.0025 (9)
C2 0.0436 (12) 0.0475 (12) 0.0343 (11) −0.0036 (9) 0.0031 (9) 0.0068 (9)
C3 0.0414 (11) 0.0503 (12) 0.0273 (10) −0.0052 (9) 0.0034 (8) −0.0031 (9)
C4 0.0459 (11) 0.0398 (11) 0.0315 (10) −0.0048 (9) 0.0026 (8) −0.0033 (8)
C5 0.0302 (10) 0.0372 (11) 0.0277 (10) −0.0007 (8) 0.0050 (8) 0.0011 (8)
C6 0.0273 (9) 0.0363 (11) 0.0285 (10) 0.0012 (8) 0.0055 (7) 0.0005 (8)
C7 0.0547 (14) 0.0787 (16) 0.0417 (12) −0.0058 (12) 0.0164 (10) −0.0086 (11)
C8 0.0718 (15) 0.0698 (15) 0.0315 (11) −0.0090 (12) −0.0035 (10) −0.0008 (10)
C9 0.0406 (11) 0.0384 (11) 0.0289 (10) −0.0023 (9) 0.0057 (8) 0.0017 (8)
C10 0.0337 (10) 0.0414 (11) 0.0301 (10) −0.0037 (8) 0.0075 (8) 0.0003 (9)
C11 0.0325 (10) 0.0330 (10) 0.0317 (10) 0.0009 (8) 0.0076 (8) −0.0014 (8)
C12 0.0680 (15) 0.0400 (12) 0.0413 (12) 0.0052 (10) 0.0053 (10) 0.0018 (10)
C13 0.0780 (17) 0.0504 (14) 0.0476 (14) 0.0080 (12) −0.0010 (12) 0.0123 (11)
C14 0.0714 (16) 0.0598 (15) 0.0342 (12) −0.0066 (12) −0.0011 (10) 0.0102 (11)
C15 0.0541 (13) 0.0500 (13) 0.0298 (11) −0.0085 (10) 0.0052 (9) −0.0001 (9)
C16 0.0310 (10) 0.0342 (10) 0.0300 (10) 0.0004 (8) 0.0049 (8) −0.0010 (8)
C17 0.0358 (11) 0.0522 (12) 0.0390 (12) −0.0019 (9) 0.0077 (9) −0.0100 (9)
C18 0.0419 (12) 0.0506 (12) 0.0367 (11) −0.0049 (10) 0.0019 (9) −0.0064 (9)
C19 0.0284 (11) 0.0751 (15) 0.0464 (13) −0.0006 (10) 0.0017 (9) −0.0082 (11)
C20 0.0339 (13) 0.153 (3) 0.0556 (15) 0.0073 (14) 0.0094 (11) −0.0419 (15)
C21 0.0357 (12) 0.1076 (19) 0.0418 (13) 0.0026 (12) 0.0020 (10) −0.0293 (12)
C22 0.0390 (13) 0.0911 (18) 0.0553 (15) −0.0085 (12) −0.0084 (11) 0.0041 (13)

Geometric parameters (Å, º)

N1—C5 1.370 (2) C8—H8B 0.9600
N1—C9 1.414 (2) C8—H8C 0.9600
N1—H1A 0.8600 C9—C12 1.389 (2)
N2—C10 1.417 (2) C9—C10 1.392 (2)
N2—C11 1.490 (2) C10—C15 1.388 (2)
N2—H2C 0.949 (19) C11—C16 1.524 (2)
O1—C1 1.243 (2) C11—H11A 0.9800
O2—C19 1.380 (2) C12—C13 1.378 (3)
O2—C22 1.400 (2) C12—H12A 0.9300
O1W—H1C 1.00 (3) C13—C14 1.374 (3)
O1W—H1B 0.97 (3) C13—H13A 0.9300
C1—C6 1.449 (2) C14—C15 1.380 (3)
C1—C2 1.505 (2) C14—H14A 0.9300
C2—C3 1.520 (3) C15—H15A 0.9300
C2—H2A 0.9700 C16—C21 1.371 (2)
C2—H2B 0.9700 C16—C17 1.380 (2)
C3—C4 1.524 (2) C17—C18 1.388 (3)
C3—C8 1.528 (2) C17—H17A 0.9300
C3—C7 1.534 (3) C18—C19 1.368 (3)
C4—C5 1.507 (2) C18—H18A 0.9300
C4—H4A 0.9700 C19—C20 1.369 (3)
C4—H4B 0.9700 C20—C21 1.378 (3)
C5—C6 1.369 (2) C20—H20A 0.9300
C6—C11 1.500 (2) C21—H21A 0.9300
C7—H7A 0.9600 C22—H22A 0.9600
C7—H7B 0.9600 C22—H22B 0.9600
C7—H7C 0.9600 C22—H22C 0.9600
C8—H8A 0.9600
C5—N1—C9 132.62 (15) C12—C9—N1 116.87 (16)
C5—N1—H1A 113.7 C10—C9—N1 123.65 (16)
C9—N1—H1A 113.7 C15—C10—C9 118.53 (17)
C10—N2—C11 115.11 (14) C15—C10—N2 120.98 (16)
C10—N2—H2C 111.4 (11) C9—C10—N2 120.48 (16)
C11—N2—H2C 108.9 (11) N2—C11—C6 110.93 (14)
C19—O2—C22 119.15 (16) N2—C11—C16 112.42 (14)
H1C—O1W—H1B 104 (2) C6—C11—C16 115.65 (14)
O1—C1—C6 121.29 (16) N2—C11—H11A 105.7
O1—C1—C2 119.90 (16) C6—C11—H11A 105.7
C6—C1—C2 118.76 (16) C16—C11—H11A 105.7
C1—C2—C3 112.89 (15) C13—C12—C9 121.37 (19)
C1—C2—H2A 109.0 C13—C12—H12A 119.3
C3—C2—H2A 109.0 C9—C12—H12A 119.3
C1—C2—H2B 109.0 C14—C13—C12 119.3 (2)
C3—C2—H2B 109.0 C14—C13—H13A 120.3
H2A—C2—H2B 107.8 C12—C13—H13A 120.3
C2—C3—C4 106.36 (15) C13—C14—C15 119.93 (19)
C2—C3—C8 110.71 (15) C13—C14—H14A 120.0
C4—C3—C8 109.11 (16) C15—C14—H14A 120.0
C2—C3—C7 110.83 (15) C14—C15—C10 121.43 (18)
C4—C3—C7 111.29 (16) C14—C15—H15A 119.3
C8—C3—C7 108.53 (16) C10—C15—H15A 119.3
C5—C4—C3 114.71 (15) C21—C16—C17 116.91 (17)
C5—C4—H4A 108.6 C21—C16—C11 122.92 (16)
C3—C4—H4A 108.6 C17—C16—C11 120.17 (15)
C5—C4—H4B 108.6 C16—C17—C18 122.55 (17)
C3—C4—H4B 108.6 C16—C17—H17A 118.7
H4A—C4—H4B 107.6 C18—C17—H17A 118.7
C6—C5—N1 126.45 (16) C19—C18—C17 118.93 (18)
C6—C5—C4 122.15 (15) C19—C18—H18A 120.5
N1—C5—C4 111.40 (15) C17—C18—H18A 120.5
C5—C6—C1 119.04 (16) C18—C19—C20 119.49 (19)
C5—C6—C11 124.43 (15) C18—C19—O2 124.40 (18)
C1—C6—C11 116.42 (16) C20—C19—O2 116.12 (18)
C3—C7—H7A 109.5 C19—C20—C21 120.7 (2)
C3—C7—H7B 109.5 C19—C20—H20A 119.6
H7A—C7—H7B 109.5 C21—C20—H20A 119.6
C3—C7—H7C 109.5 C16—C21—C20 121.38 (19)
H7A—C7—H7C 109.5 C16—C21—H21A 119.3
H7B—C7—H7C 109.5 C20—C21—H21A 119.3
C3—C8—H8A 109.5 O2—C22—H22A 109.5
C3—C8—H8B 109.5 O2—C22—H22B 109.5
H8A—C8—H8B 109.5 H22A—C22—H22B 109.5
C3—C8—H8C 109.5 O2—C22—H22C 109.5
H8A—C8—H8C 109.5 H22A—C22—H22C 109.5
H8B—C8—H8C 109.5 H22B—C22—H22C 109.5
C12—C9—C10 119.41 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1Wi 0.86 2.14 2.994 (3) 170
O1W—H1B···N2ii 0.98 (3) 2.04 (3) 3.020 (3) 178.2 (14)
O1W—H1C···O2 0.99 (2) 1.85 (2) 2.832 (3) 170 (2)
N2—H2C···O1iii 0.949 (18) 2.099 (18) 3.047 (3) 177.4 (13)

Symmetry codes: (i) −x+2, −y, −z; (ii) x+1, y, z; (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2060).

References

  1. Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221. [DOI] [PubMed]
  2. Beccalli, E. M., Broggini, G., Paladino, G. & Zoni, C. (2005). Tetrahedron, 61, 61–68.
  3. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cortés, C. E., Cornejo, A. L. V. & García, M. O. (2007). J. Heterocycl. Chem. 44, 183–187.
  5. Farnet, C. M., Dimitriadou, V. & Bachmann, B. O. (2005). US Patent Appl. 107363 A1.
  6. Hanze, A. R., Strube, R. E. & Greig, M. E. (1963). J. Med. Chem. 6, 767–771. [DOI] [PubMed]
  7. Joergensen, T. K., Andersen, K. E., Andersen, H. S., Hohlweg, R., Madsen, P. & Olsen, U. B. (1996). PCT Int. Appl. WO9631497 A1.
  8. Kolos, N. N., Yurchenko, E. N., Orlov, V. D., Shishkina, S. V. & Shishkin, O. V. (2004). Chem. Heterocycl. Compd, 40, 1550–1559.
  9. McAlpine, J. B., Banskota, A. H. & Aouidate, M. (2008). US Patent Appl. 161291 A1.
  10. McGowan, D., et al. (2009). Bioorg. Med. Chem. Lett. 19, 2492–2496.
  11. Rashed, N., Sayed, M. & El-Ashry, E. S. H. (1993). J. Chin. Chem. Soc. 40, 189–194.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812016194/ff2060sup1.cif

e-68-o1508-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812016194/ff2060Isup2.hkl

e-68-o1508-Isup2.hkl (221.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812016194/ff2060Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES