Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 25;68(Pt 5):o1522. doi: 10.1107/S160053681201687X

2-[2-(Trifluoro­meth­yl)phen­yl]-2H-1-benzopyran-4(3H)-one

Bojana M Francuski a, Branka Ivković b,*, Ivana Stojanović b, Sote Vladimirov b, Djordje Francuski c
PMCID: PMC3344626  PMID: 22590388

Abstract

In the title compound, C16H11F3O2, the γ-pyran­one ring adopts an envelope conformation with the chiral C atom standing out of the ring plane. In the crystal, molecules are linked by C—H⋯O and C—H⋯F inter­actions.

Related literature  

For general background to flavones, see: Harborne & Williams (2000). For related flavonoids, see: Benavente-García & Castillo (2008); Rodeiro et al. (2006). For related structures, see: Wera et al. (2012); Białońska et al. (2007); Krishnaiah et al. (2005); Wu et al. (2005). For van der Waals radii, see: Bondi (1964).graphic file with name e-68-o1522-scheme1.jpg

Experimental  

Crystal data  

  • C16H11F3O2

  • M r = 292.25

  • Orthorhombic, Inline graphic

  • a = 8.2291 (9) Å

  • b = 22.020 (3) Å

  • c = 7.3355 (11) Å

  • V = 1329.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.18 × 0.02 × 0.02 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer

  • 4585 measured reflections

  • 2558 independent reflections

  • 1462 reflections with I > 2σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.087

  • wR(F 2) = 0.109

  • S = 1.12

  • 2558 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201687X/kj2198sup1.cif

e-68-o1522-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201687X/kj2198Isup2.hkl

e-68-o1522-Isup2.hkl (123.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201687X/kj2198Isup3.mol

Supplementary material file. DOI: 10.1107/S160053681201687X/kj2198Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.54 3.311 (5) 140
C5—H5⋯F3ii 0.93 2.54 3.313 (5) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We would like to thank Dr Vladimir Divjaković and Dr Agneš Kapor for the data acquisition and Dr Goran A. Bogdanović for his valuable suggestions. Our work was supported by Scientific Research Grants from the Serbian Ministry of Science and Technology (grant Nos. OI172041, ON172035 and ON173008).

supplementary crystallographic information

Comment

The title compound belongs to the group of flavanones which occur predominantly in citrus fruits. Citrus flavonoids were reported (Benavente-García & Castillo, 2008) as having antimicrobial, antifungal, antiviral, anti–allergenic, anti-inflammatory (Harborne & Williams, 2000) and antioxidant (Rodeiro et al., 2006) properties. Case control studies suggest that flavonoids may reduce the risk of cardiovascular disease and stroke. Considering the wide spectrum of activities of natural flavonoids further structure modification of these molecules is aimed to enhance their interaction with the target sites in cells.

The title compound adopts a typical conformation of flavanones with the γ–pyranone ring adopting the envelope conformation. In this conformation the carbon atoms C1, C6, C7, C8 and oxygen O1 are nearly coplanar with a root mean square deviation from the mean plane of 0.035 Å, while the C9 carbon atom is standing out from this plane with an atom–to–plane distance of 0.652 (6) Å. All bond lengths and angles in the title compound show usual values for this type of compounds (Wera et al., 2012; Białońska et al., 2007; Krishnaiah et al., 2005; Wu et al., 2005). In this crystal packing of the title compound there are 4 intramolecular, 2 intermolecular (C—H···O and C—H···F) and one π–π interaction. All of the fluoride atoms participate in weak intramolecular C—H···F interactions (Fig. 1) with H···F distances equal or shorter than 2.50 Å, which is shorter than the sum of their Van der Waals radii (Bondi, 1964). Two of the fluoride atoms interact with the hydrogen atom connected to the chiral carbon atom C9 while the third fluoride atom interacts with one of the phenyl hydrogen atoms (Table 1). The dihedral angle between Cg1 and Cg2 rings in previously published structures of flavanones (Wera et al., 2012; Białońska et al., 2007; Krishnaiah et al., 2005; Wu et al., 2005) is in the range from 55 to 75° while the corresponding dihedral angle in the case of the title compound is 66.06 (15)°.

The flavanone molecules are connected into rows by the C3—H3···O2 intermolecular interaction forming chains down the crystallographic a axis (Fig. 2). The second intermolecular interaction, C5—H5···F3, connects the molecules into another chain in the direction of the screw axis following the crystallographic c axis, thus forming a two dimensional net of molecules (Fig. 3). Strings of molecules along the crystallographic c axis are further connected by π–π interactions (Fig. 4). Perpendicular distance from the centroid of one Cg1 ring, molecule at (x, y, z), to the plane of the second Cg1 ring, molecule at (1 - x, 2 - y, 1/2 + z), and vice versa are 3.70 and 3.62 Å respectively, while the distance between the ring centroids measures 4.101 (3) Å. The Cg1 ring planes of molecules at (x, y, z) and (1 - x, 2 - y, 1/2 + z) are nearly parallel with the dihedral angle being 5.59 (3)°.

Experimental

The proposed compound was prepared in two steps. The first step in the synthetic route consisted of the condensation of 2-hydroxy acetophenone with 2-trifluoromethylbenzaldehyde to give an α,β-unsaturated ketone (chalcone). In the second step the obtained chalcone was dissolved under stirring in a 50:50 water/ethanol mixture. The pH was set to 9.0 with 0.1 M NaOH and the reaction mixture was refluxed for 2 h after which it was cooled over night to room temperature. Small crystals of the title compound formed in the reaction vessel and, after draining excess fluid, the crystals were dried at room temperature.

Refinement

The H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 Å for aromatic C atoms, 0.97 Å for the secondary CH2 group and 0.98 Å for the tertiary CH group. Their Uiso(H) values were equal to 1.2 times Ueq of the corresponding C atom.

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined so the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non–H atoms. H atoms are represented as small spheres of arbitrary radii. Intramolecular interactions are shown as dashed lines.

Fig. 2.

Fig. 2.

Molecular packing of the title compound and intermolecular interactions along the crystallographic a axis.

Fig. 3.

Fig. 3.

Molecular packing of the title compound and intermolecular interactions along the crystallographic c axis.

Fig. 4.

Fig. 4.

π–π interactions of two neighbouring Cg1 rings. Symmetry code: (i) 1 - x, 2 - y, 1/2 + z.

Crystal data

C16H11F3O2 F(000) = 600
Mr = 292.25 Dx = 1.460 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 966 reflections
a = 8.2291 (9) Å θ = 3.3–28.9°
b = 22.020 (3) Å µ = 0.12 mm1
c = 7.3355 (11) Å T = 293 K
V = 1329.2 (3) Å3 Needle, colourless
Z = 4 0.18 × 0.02 × 0.02 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini diffractometer 1462 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.049
Graphite monochromator θmax = 28.9°, θmin = 3.7°
Detector resolution: 16.3280 pixels mm-1 h = −11→10
ω scans k = −28→29
4585 measured reflections l = −9→9
2558 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3
2558 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3661 (3) 0.90660 (11) 0.7245 (5) 0.0481 (8)
O2 −0.0253 (3) 1.02162 (14) 0.7338 (6) 0.0901 (14)
F1 0.0147 (4) 0.74844 (13) 0.3065 (5) 0.1002 (11)
F2 0.1886 (3) 0.82036 (13) 0.2974 (4) 0.0759 (8)
F3 −0.0440 (3) 0.83559 (15) 0.4155 (5) 0.0867 (10)
C1 0.3889 (4) 0.96841 (17) 0.7160 (7) 0.0394 (10)
C2 0.5488 (4) 0.98855 (19) 0.7098 (7) 0.0475 (12)
H2 0.6339 0.9608 0.7105 0.057*
C3 0.5801 (5) 1.04910 (19) 0.7029 (7) 0.0496 (12)
H3 0.6872 1.0626 0.7023 0.060*
C4 0.4543 (5) 1.09121 (19) 0.6967 (7) 0.0581 (13)
H4 0.4767 1.1325 0.6878 0.070*
C5 0.2973 (5) 1.07110 (18) 0.7040 (7) 0.0557 (13)
H5 0.2132 1.0993 0.7028 0.067*
C6 0.2595 (4) 1.00912 (18) 0.7131 (7) 0.0416 (11)
C7 0.0917 (5) 0.98787 (19) 0.7367 (8) 0.0563 (14)
C8 0.0756 (4) 0.92045 (17) 0.7675 (7) 0.0555 (15)
H8A −0.0302 0.9070 0.7254 0.067*
H8B 0.0831 0.9119 0.8969 0.067*
C9 0.2082 (4) 0.88567 (18) 0.6662 (6) 0.0393 (11)
H9 0.1964 0.8925 0.5349 0.047*
C10 0.2017 (4) 0.81852 (19) 0.7043 (6) 0.0365 (10)
C11 0.1381 (5) 0.7759 (2) 0.5836 (6) 0.0387 (11)
C12 0.1326 (5) 0.7148 (2) 0.6313 (7) 0.0478 (13)
H12 0.0877 0.6868 0.5509 0.057*
C13 0.1925 (5) 0.6955 (2) 0.7952 (8) 0.0540 (12)
H13 0.1884 0.6545 0.8253 0.065*
C14 0.2581 (5) 0.7360 (2) 0.9145 (7) 0.0583 (14)
H14 0.2998 0.7227 1.0254 0.070*
C15 0.2626 (5) 0.7976 (2) 0.8697 (7) 0.0505 (13)
H15 0.3071 0.8252 0.9518 0.061*
C16 0.0756 (6) 0.7942 (2) 0.4026 (8) 0.0594 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0319 (14) 0.0360 (17) 0.076 (2) −0.0008 (13) −0.0020 (16) 0.001 (2)
O2 0.0468 (16) 0.064 (2) 0.160 (4) 0.0188 (17) 0.013 (2) 0.002 (3)
F1 0.149 (3) 0.079 (2) 0.072 (2) −0.041 (2) −0.051 (2) −0.002 (2)
F2 0.0938 (18) 0.087 (2) 0.0464 (17) −0.0169 (17) 0.0070 (17) 0.0086 (19)
F3 0.0697 (18) 0.097 (2) 0.093 (2) 0.0126 (19) −0.0212 (18) 0.022 (2)
C1 0.044 (2) 0.032 (2) 0.042 (3) −0.002 (2) 0.007 (2) −0.009 (3)
C2 0.035 (2) 0.046 (3) 0.062 (3) 0.000 (2) 0.007 (3) 0.001 (3)
C3 0.050 (2) 0.045 (3) 0.055 (3) −0.011 (2) 0.006 (3) 0.005 (3)
C4 0.070 (3) 0.031 (2) 0.073 (4) −0.011 (3) 0.018 (3) −0.005 (3)
C5 0.060 (3) 0.036 (3) 0.071 (3) 0.009 (2) 0.010 (3) −0.001 (3)
C6 0.041 (2) 0.036 (3) 0.049 (3) 0.002 (2) 0.005 (3) −0.002 (3)
C7 0.047 (2) 0.047 (3) 0.076 (4) 0.002 (2) 0.006 (3) −0.013 (4)
C8 0.037 (2) 0.045 (3) 0.085 (4) −0.002 (2) 0.009 (3) −0.004 (3)
C9 0.040 (2) 0.042 (2) 0.036 (3) −0.003 (2) 0.005 (2) −0.007 (2)
C10 0.0344 (19) 0.037 (3) 0.038 (3) −0.005 (2) 0.001 (2) 0.002 (3)
C11 0.030 (2) 0.044 (3) 0.042 (3) −0.001 (2) −0.002 (2) 0.002 (3)
C12 0.056 (3) 0.041 (3) 0.046 (3) −0.001 (3) 0.004 (2) −0.005 (3)
C13 0.060 (3) 0.035 (3) 0.067 (3) −0.004 (3) 0.005 (3) 0.006 (3)
C14 0.066 (3) 0.060 (4) 0.050 (3) −0.009 (3) −0.014 (3) 0.015 (3)
C15 0.061 (3) 0.046 (3) 0.045 (3) −0.008 (2) −0.001 (3) −0.006 (3)
C16 0.060 (3) 0.058 (4) 0.060 (4) −0.011 (3) −0.016 (3) 0.001 (4)

Geometric parameters (Å, º)

O1—C1 1.376 (4) C7—C8 1.508 (5)
O1—C9 1.443 (4) C8—C9 1.526 (5)
O2—C7 1.217 (4) C8—H8A 0.9700
F1—C16 1.328 (5) C8—H8B 0.9700
F2—C16 1.339 (5) C9—C10 1.506 (5)
F3—C16 1.345 (5) C9—H9 0.9800
C1—C2 1.389 (5) C10—C15 1.391 (5)
C1—C6 1.392 (5) C10—C11 1.392 (5)
C2—C3 1.359 (5) C11—C12 1.390 (6)
C2—H2 0.9300 C11—C16 1.480 (7)
C3—C4 1.390 (5) C12—C13 1.367 (6)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.367 (5) C13—C14 1.361 (6)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.401 (5) C14—C15 1.397 (6)
C5—H5 0.9300 C14—H14 0.9300
C6—C7 1.468 (5) C15—H15 0.9300
C1—O1—C9 115.2 (3) O1—C9—C8 109.8 (3)
O1—C1—C2 116.5 (3) C10—C9—C8 112.2 (3)
O1—C1—C6 122.3 (3) O1—C9—H9 109.3
C2—C1—C6 121.2 (3) C10—C9—H9 109.3
C3—C2—C1 119.6 (4) C8—C9—H9 109.3
C3—C2—H2 120.2 C15—C10—C11 117.9 (4)
C1—C2—H2 120.2 C15—C10—C9 118.3 (4)
C2—C3—C4 121.0 (4) C11—C10—C9 123.9 (4)
C2—C3—H3 119.5 C12—C11—C10 120.3 (4)
C4—C3—H3 119.5 C12—C11—C16 118.5 (4)
C5—C4—C3 119.1 (4) C10—C11—C16 121.2 (4)
C5—C4—H4 120.4 C13—C12—C11 120.7 (5)
C3—C4—H4 120.4 C13—C12—H12 119.7
C4—C5—C6 121.8 (4) C11—C12—H12 119.7
C4—C5—H5 119.1 C14—C13—C12 120.3 (5)
C6—C5—H5 119.1 C14—C13—H13 119.8
C1—C6—C5 117.3 (3) C12—C13—H13 119.8
C1—C6—C7 120.8 (4) C13—C14—C15 119.7 (5)
C5—C6—C7 121.6 (4) C13—C14—H14 120.1
O2—C7—C6 123.2 (4) C15—C14—H14 120.1
O2—C7—C8 122.3 (4) C10—C15—C14 121.1 (4)
C6—C7—C8 114.5 (4) C10—C15—H15 119.4
C7—C8—C9 111.0 (3) C14—C15—H15 119.4
C7—C8—H8A 109.4 F1—C16—F2 106.4 (5)
C9—C8—H8A 109.4 F1—C16—F3 106.0 (4)
C7—C8—H8B 109.4 F2—C16—F3 104.9 (4)
C9—C8—H8B 109.4 F1—C16—C11 113.7 (4)
H8A—C8—H8B 108.0 F2—C16—C11 113.2 (4)
O1—C9—C10 106.9 (3) F3—C16—C11 112.0 (5)
C9—O1—C1—C2 −158.8 (4) C7—C8—C9—C10 176.3 (4)
C9—O1—C1—C6 21.0 (7) O1—C9—C10—C15 43.2 (5)
O1—C1—C2—C3 −179.4 (5) C8—C9—C10—C15 −77.3 (5)
C6—C1—C2—C3 0.7 (8) O1—C9—C10—C11 −136.9 (4)
C1—C2—C3—C4 −1.8 (8) C8—C9—C10—C11 102.7 (4)
C2—C3—C4—C5 2.2 (8) C15—C10—C11—C12 1.7 (6)
C3—C4—C5—C6 −1.6 (8) C9—C10—C11—C12 −178.2 (4)
O1—C1—C6—C5 −179.9 (4) C15—C10—C11—C16 −178.1 (4)
C2—C1—C6—C5 −0.1 (7) C9—C10—C11—C16 2.0 (6)
O1—C1—C6—C7 5.9 (7) C10—C11—C12—C13 −1.4 (6)
C2—C1—C6—C7 −174.3 (5) C16—C11—C12—C13 178.4 (4)
C4—C5—C6—C1 0.5 (8) C11—C12—C13—C14 0.2 (7)
C4—C5—C6—C7 174.7 (5) C12—C13—C14—C15 0.7 (7)
C1—C6—C7—O2 −179.4 (6) C11—C10—C15—C14 −0.9 (6)
C5—C6—C7—O2 6.6 (9) C9—C10—C15—C14 179.1 (4)
C1—C6—C7—C8 1.3 (7) C13—C14—C15—C10 −0.3 (7)
C5—C6—C7—C8 −172.6 (5) C12—C11—C16—F1 2.2 (7)
O2—C7—C8—C9 148.5 (5) C10—C11—C16—F1 −178.0 (4)
C6—C7—C8—C9 −32.3 (6) C12—C11—C16—F2 −119.4 (4)
C1—O1—C9—C10 −174.2 (4) C10—C11—C16—F2 60.4 (6)
C1—O1—C9—C8 −52.2 (5) C12—C11—C16—F3 122.3 (4)
C7—C8—C9—O1 57.6 (5) C10—C11—C16—F3 −57.9 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···F2 0.98 2.36 3.068 (5) 129
C9—H9···F3 0.98 2.50 2.984 (5) 110
C12—H12···F1 0.93 2.33 2.677 (6) 102
C15—H15···O1 0.93 2.50 2.760 (5) 96
C3—H3···O2i 0.93 2.54 3.311 (5) 140
C5—H5···F3ii 0.93 2.54 3.313 (5) 141

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2198).

References

  1. Benavente-García, O. & Castillo, J. (2008). J. Agric. Food Chem. 56, 6185–6205. [DOI] [PubMed]
  2. Białońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007). Acta Cryst. E63, o432–o433.
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Harborne, J. B. & Williams, C. A. (2000). Phytochemistry, 55, 481–504. [DOI] [PubMed]
  7. Krishnaiah, M., Ravi Kumar, R., Jagadeesh Kumar, N., Gunasekar, D. & Jayaprakasam, B. (2005). Acta Cryst. E61, o3565–o3567.
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd., Yarnton, Oxfordshire, England.
  10. Rodeiro, I., Cancino, L., González, J. E., Morffi, J., Garrido, G., González, R. M., Nuñez, A. & Delgado, R. (2006). Food Chem. Toxicol. 44, 1707–1713. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Wera, M., Chalyi, A. G., Roshal, A. D. & Błażejowski, J. (2012). Acta Cryst. E68, o253–o254. [DOI] [PMC free article] [PubMed]
  14. Wu, H., Xu, Z., Wan, Y., Liang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, o1692–o1693.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681201687X/kj2198sup1.cif

e-68-o1522-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201687X/kj2198Isup2.hkl

e-68-o1522-Isup2.hkl (123.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681201687X/kj2198Isup3.mol

Supplementary material file. DOI: 10.1107/S160053681201687X/kj2198Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES