Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 25;68(Pt 5):o1525–o1526. doi: 10.1107/S1600536812017084

Ethyl 7-oxo-3,5-diphenyl-1,4-diazepane-2-carboxyl­ate

G Jagadeesan a, K Sethusankar b,*, P Selvakumar c, S Thennarasu c, A B Mandal c
PMCID: PMC3344629  PMID: 22590391

Abstract

The title compound, C20H22N2O3, crystallizes with two independent mol­ecules in the asymmetric unit. In both mol­ecules, the diazepane rings adopt chair conformations. The mean planes of the diazepane rings in the two molecules form dihedral angles of 71.6 (4)/40.3 (5) and 75.9 (5)/58.6 (7)° with the neighbouring benzene rings. The carbonyl-group O atoms deviate significantly from the diazepane rings, by 0.685 (14) and 0.498 (13) Å. The eth­oxy­carbonyl groups show conformational difference between two mol­ecules, as reflected in the orientation of the carbonyl O atoms and the C—C—O—C torsion angle of −179.0 (2)° in one mol­ecule and 73.2 (2)° in the other. In one molecule there is a short N—H⋯O contact that generates an S(5) ring motif. In the crystal, N—H⋯O inter­actions generate R 2 2(8) graph-set motifs and C—H⋯O inter­actions generate R 2 2(10) and R 2 2(14) graph-set motifs. C—H⋯π inter­actions also occur.

Related literature  

For the biological importance of diazepanes, see: Wlodarczyk et al. (2005); Gopalakrishnan et al. (2007). For a related structure, see: Kumar et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-68-o1525-scheme1.jpg

Experimental  

Crystal data  

  • C20H22N2O3

  • M r = 338.40

  • Triclinic, Inline graphic

  • a = 9.5352 (3) Å

  • b = 14.8809 (4) Å

  • c = 15.0800 (4) Å

  • α = 61.650 (1)°

  • β = 82.153 (2)°

  • γ = 71.344 (2)°

  • V = 1783.86 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.975, T max = 0.979

  • 39936 measured reflections

  • 9437 independent reflections

  • 6221 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.181

  • S = 1.15

  • 9437 reflections

  • 465 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017084/pv2527sup1.cif

e-68-o1525-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017084/pv2527Isup2.hkl

e-68-o1525-Isup2.hkl (461.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017084/pv2527Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C33–C38 and C26–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.85 (2) 2.45 (2) 2.776 (2) 104 (2)
N2—H2⋯O6i 0.85 (2) 2.26 (2) 3.091 (1) 170 (2)
N4—H4A⋯O3ii 0.85 (2) 2.14 (2) 2.983 (1) 169 (2)
C2—H2B⋯O2iii 0.97 2.53 3.233 (2) 130
C39—H39A⋯O5iv 0.97 2.48 3.355 (2) 150
C9—H9⋯Cg1v 0.93 2.89 3.735 (3) 152
C16—H16⋯Cg2vi 0.93 2.91 3.712 (1) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

supplementary crystallographic information

Comment

The title compound belongs to an important class of heterocyclic compounds that have widespread applications from pharmaceuticals (Wlodarczyk et al., 2005) to biology (Gopalakrishnan et al., 2007).

In the title structure there are two crystallographically independent molecules (1 and 2) in an asymmetric unit (Fig. 1 and Fig. 2, respectively). The central diazepane rings (C4/C5/C12/C19/C20/N1/N2) and (C24/C25/C32/C39/C40/N3/N4) in the molecule 1 and 2 form dihedral angles of 71.6 (4)°, 40.3 (5)° and 75.9 (5)°, 58.6 (7)° with the neighbouring benzene rings (C6–C11), (C13–C18) and (C26–C31), (C33–C38), respectively. The dihedral angles between the pairs of benzene rings (C6–C11), (C13–C18) and (C26–C31), (C33–C38) are 54.8 (7)° and 58.4 (6)°, respectively. The sum of the bond angles around the atoms N2 (362°) and N4 (359.8°) of the diazepane rings indicate sp2 hybridization, whereas the other N atoms, [N1 (328.6°) and N3 (331.2°)] indicate sp3 hybridization.

The atoms O3 and O6 deviate by 0.685 (14) Å and 0.498 (13) Å from the least square plane of the diazepane rings (C4/C5/C12/C19/C20/N1/N2) and (C24/C25/C32/C39/C40/N3/N4), respectively. The ethyl carboxylate groups exhibit significant conformational difference between the two molecules as reflected by the orientation of the carbonyl O-atoms and the torsion angles of C1—C2—O1—C3 is -179.0 (2)° for molecule 1 and C21—C22—O4—C23 is 73.2 (2)° in molecule 2. The conformational differences in the two molecules of the asymmetric unit of the title compound are evident in Fig. 3.

The diazepane rings (C4/C5/C12/C19/C20/N1/N2) and (C24/C25/C32/C39/C40/N3/N4) adopt chair conformations with puckering parameters (Cremer & Pople, 1975) Q2 = 0.382 (2) Å, Q3 = 0.678 (2) Å, φ2 = 180.4 (2)°, φ3 = 359.71 (14)° and Q2 = 0.333 (2) Å, Q3 = 0.670 (2) Å, φ2 = 182.9 (3)°, φ3 = 2.44 (14)°, respectively. The title compound exhibits structural similarities with another reported structure (Kumar et al., 2009).

The crystal packing is stabilized by intramolecular N–H···O, intermolecular N–H···O, C–H···O and C–H···π interactions (Table 1). The N2–H2···O2, N2–H2···O6i, N2–H4A···O3ii, C2–H2B···O2iii and C39–H39B···O5iv hydrogen bonds generates S(5) ring motif, dimers R22(8), R22(10) and R22(14) graphset motifs, respectively (Bernstein, et al., 1995). The crystal packing is further stabilized by C9—H9···Cg1v and C16—H16···Cg2vi interactions where Cg1 is center of gravity of (C33–C38) ring and Cg2 is center of gravity of (C26–C31) ring (Fig. 4; symmetry codes are given in Table 1)

Experimental

In a typical reaction, powdered ethyl 4-oxo-2,6-diphenyl piperidine- 3-carboxylate hydrochloride (2 g) was dissolved in an ice cold conc. H2SO4 (10 ml) in chloroform (5 ml) placed in a conical flask equipped with a magnetic stirrer. After the complete dissolution, the temperature of the solution was brought to 298 K. Sodium azide (600 mg) was added in portions over a period of 20 minutes with vigorous stirring. After the addition was over, the solution was poured slowly on to crushed ice with vigorous stirring, and the PH was adjusted to 8.0 using 4 N sodium hydroxide and extracted with chloroform. The combined organic layer was dried over sodium sulfate and evaporated to get the crude product which was purified by recrystallization from benzene and ethanol (1:1) to afford colourless prisms of the title compound.

Refinement

The Hydrogen atoms were placed in calculated positions with C–H = 0.93 to 0.97 Å and N–H = 0.83 (2) to 0.85 (2) Å refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for methyl group and Uiso(H) = 1.2 Ueq(C/N) for other groups.

Figures

Fig. 1.

Fig. 1.

Molecule 1 of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Molecule 2 of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 3.

Fig. 3.

Molecule 1(Black) and Molecule 2 (Red) of the title compound overlapping each other, H atoms are shown as spheres of arbitrary radius.

Fig. 4.

Fig. 4.

The crystal packing of the title compound viewed down the c axis, showing hydrogen bonds resulting in S(5) ring motif, dimers R22(8), R22(10) and R22(14) graphset motifs; H-atoms not involved in hydrogen bonds have been excluded for clarity.

Crystal data

C20H22N2O3 Z = 4
Mr = 338.40 F(000) = 720
Triclinic, P1 Dx = 1.260 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5352 (3) Å Cell parameters from 9437 reflections
b = 14.8809 (4) Å θ = 1.5–29.1°
c = 15.0800 (4) Å µ = 0.09 mm1
α = 61.650 (1)° T = 293 K
β = 82.153 (2)° Block, colourless
γ = 71.344 (2)° 0.30 × 0.30 × 0.25 mm
V = 1783.86 (9) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 9437 independent reflections
Radiation source: fine-focus sealed tube 6221 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω and φ scan θmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→12
Tmin = 0.975, Tmax = 0.979 k = −20→20
39936 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181 H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
9437 reflections (Δ/σ)max = 0.001
465 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47991 (14) −0.06939 (10) 0.20798 (8) 0.0525 (3)
O2 0.59115 (16) 0.04761 (10) 0.09211 (8) 0.0624 (4)
O3 0.49513 (15) 0.29409 (9) 0.22928 (9) 0.0569 (3)
N1 0.74551 (15) −0.04002 (10) 0.39917 (9) 0.0407 (3)
H1 0.833 (2) −0.0769 (15) 0.4161 (13) 0.049*
N2 0.53465 (15) 0.14336 (10) 0.21778 (9) 0.0409 (3)
H2 0.5204 (19) 0.1802 (14) 0.1547 (14) 0.049*
C1 0.3938 (4) −0.1898 (2) 0.1853 (2) 0.1086 (10)
H1A 0.4398 −0.2441 0.2491 0.163*
H1B 0.3960 −0.2216 0.1425 0.163*
H1C 0.2930 −0.1564 0.1954 0.163*
C2 0.4739 (3) −0.10988 (17) 0.13802 (15) 0.0668 (6)
H2A 0.5734 −0.1417 0.1220 0.080*
H2B 0.4237 −0.0519 0.0760 0.080*
C3 0.54711 (18) 0.00514 (12) 0.17573 (11) 0.0422 (4)
C4 0.56892 (16) 0.02807 (11) 0.25989 (10) 0.0365 (3)
H4 0.5006 0.0025 0.3144 0.044*
C5 0.73055 (17) −0.03196 (11) 0.30013 (10) 0.0375 (3)
H5 0.7964 0.0074 0.2531 0.045*
C6 0.77658 (17) −0.14315 (12) 0.31021 (11) 0.0416 (4)
C7 0.7214 (2) −0.22217 (14) 0.38552 (13) 0.0564 (5)
H7 0.6597 −0.2083 0.4337 0.068*
C8 0.7573 (3) −0.32131 (15) 0.38941 (15) 0.0744 (6)
H8 0.7205 −0.3741 0.4408 0.089*
C9 0.8465 (3) −0.34294 (16) 0.31860 (17) 0.0778 (7)
H9 0.8687 −0.4097 0.3210 0.093*
C10 0.9023 (2) −0.26639 (17) 0.24476 (16) 0.0714 (6)
H10 0.9636 −0.2811 0.1968 0.086*
C11 0.8689 (2) −0.16731 (15) 0.24034 (13) 0.0552 (5)
H11 0.9088 −0.1159 0.1898 0.066*
C12 0.73176 (16) 0.05855 (11) 0.40290 (10) 0.0364 (3)
H12 0.7962 0.0961 0.3522 0.044*
C13 0.78172 (16) 0.03114 (12) 0.50683 (10) 0.0373 (3)
C14 0.79566 (18) −0.06809 (13) 0.58854 (11) 0.0456 (4)
H14 0.7732 −0.1204 0.5809 0.055*
C15 0.8426 (2) −0.09052 (15) 0.68171 (12) 0.0549 (5)
H15 0.8518 −0.1578 0.7360 0.066*
C16 0.8757 (2) −0.01420 (16) 0.69434 (12) 0.0571 (5)
H16 0.9076 −0.0295 0.7569 0.069*
C17 0.8614 (2) 0.08413 (16) 0.61463 (13) 0.0594 (5)
H17 0.8825 0.1364 0.6231 0.071*
C18 0.8156 (2) 0.10706 (14) 0.52086 (12) 0.0516 (4)
H18 0.8075 0.1743 0.4668 0.062*
C19 0.57133 (17) 0.13165 (12) 0.38076 (10) 0.0397 (3)
H19A 0.5049 0.0881 0.4144 0.048*
H19B 0.5567 0.1803 0.4092 0.048*
C20 0.53007 (16) 0.19611 (12) 0.26997 (10) 0.0386 (3)
O4 0.31252 (12) 0.53774 (10) 1.14341 (8) 0.0493 (3)
O5 0.07097 (13) 0.55078 (10) 1.15916 (8) 0.0552 (3)
O6 0.46013 (13) 0.30348 (9) 0.99326 (8) 0.0525 (3)
N3 0.16447 (14) 0.63277 (10) 0.83956 (9) 0.0405 (3)
H3 0.1599 (19) 0.6944 (15) 0.7926 (14) 0.049*
N4 0.32947 (14) 0.43294 (10) 1.03308 (9) 0.0411 (3)
H4A 0.3836 (19) 0.3987 (14) 1.0864 (13) 0.049*
C21 0.2862 (3) 0.4781 (2) 1.32355 (16) 0.0918 (8)
H21A 0.3543 0.4117 1.3302 0.138*
H21B 0.1867 0.4742 1.3285 0.138*
H21C 0.3055 0.4917 1.3762 0.138*
C22 0.3050 (2) 0.56515 (18) 1.22498 (14) 0.0647 (5)
H22A 0.2227 0.6287 1.2121 0.078*
H22B 0.3952 0.5813 1.2267 0.078*
C23 0.18582 (17) 0.53656 (12) 1.11706 (11) 0.0395 (3)
C24 0.20218 (16) 0.52322 (11) 1.02292 (10) 0.0355 (3)
H24 0.1137 0.5073 1.0154 0.043*
C25 0.20763 (16) 0.63003 (11) 0.93032 (10) 0.0356 (3)
H25 0.3083 0.6362 0.9232 0.043*
C26 0.10097 (16) 0.72316 (11) 0.94280 (10) 0.0365 (3)
C27 0.15310 (19) 0.78986 (13) 0.96197 (11) 0.0451 (4)
H27 0.2544 0.7797 0.9635 0.054*
C28 0.0547 (2) 0.87075 (14) 0.97860 (13) 0.0557 (5)
H28 0.0902 0.9156 0.9903 0.067*
C29 −0.0951 (2) 0.88640 (14) 0.97817 (13) 0.0571 (5)
H29 −0.1602 0.9409 0.9904 0.069*
C30 −0.14881 (19) 0.82081 (14) 0.95948 (12) 0.0506 (4)
H30 −0.2501 0.8307 0.9591 0.061*
C31 −0.05059 (17) 0.74068 (12) 0.94139 (11) 0.0421 (4)
H31 −0.0869 0.6973 0.9279 0.050*
C32 0.26852 (17) 0.56031 (12) 0.80412 (10) 0.0378 (3)
H32 0.3678 0.5678 0.8009 0.045*
C33 0.21848 (18) 0.59202 (12) 0.69885 (10) 0.0417 (4)
C34 0.0713 (2) 0.63035 (13) 0.67137 (12) 0.0505 (4)
H34 −0.0005 0.6397 0.7171 0.061*
C35 0.0286 (2) 0.65530 (15) 0.57568 (14) 0.0651 (6)
H35 −0.0714 0.6814 0.5582 0.078*
C36 0.1311 (3) 0.64200 (16) 0.50766 (15) 0.0734 (6)
H36 0.1019 0.6588 0.4439 0.088*
C37 0.2760 (3) 0.6040 (2) 0.53387 (15) 0.0824 (7)
H37 0.3472 0.5945 0.4879 0.099*
C38 0.3196 (2) 0.57900 (18) 0.62977 (14) 0.0691 (6)
H38 0.4199 0.5529 0.6467 0.083*
C39 0.27301 (17) 0.44403 (11) 0.87378 (10) 0.0390 (3)
H39A 0.1720 0.4414 0.8905 0.047*
H39B 0.3131 0.4036 0.8365 0.047*
C40 0.36168 (16) 0.38832 (11) 0.97132 (11) 0.0378 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0665 (8) 0.0548 (7) 0.0509 (6) −0.0214 (6) −0.0054 (5) −0.0318 (6)
O2 0.1019 (10) 0.0526 (8) 0.0345 (6) −0.0243 (7) −0.0070 (6) −0.0182 (5)
O3 0.0821 (9) 0.0307 (6) 0.0520 (6) −0.0023 (6) −0.0264 (6) −0.0162 (5)
N1 0.0499 (8) 0.0327 (7) 0.0367 (6) 0.0007 (6) −0.0144 (5) −0.0178 (5)
N2 0.0556 (8) 0.0297 (6) 0.0313 (6) −0.0030 (6) −0.0119 (5) −0.0119 (5)
C1 0.164 (3) 0.109 (2) 0.107 (2) −0.079 (2) 0.0090 (19) −0.0683 (18)
C2 0.0872 (14) 0.0718 (13) 0.0651 (11) −0.0244 (11) −0.0112 (10) −0.0460 (11)
C3 0.0520 (9) 0.0344 (8) 0.0383 (8) −0.0021 (7) −0.0133 (7) −0.0182 (6)
C4 0.0466 (8) 0.0300 (7) 0.0321 (6) −0.0068 (6) −0.0058 (6) −0.0148 (6)
C5 0.0448 (8) 0.0333 (8) 0.0322 (6) −0.0049 (6) −0.0059 (6) −0.0158 (6)
C6 0.0503 (9) 0.0333 (8) 0.0366 (7) 0.0014 (7) −0.0124 (6) −0.0177 (6)
C7 0.0824 (13) 0.0420 (10) 0.0433 (8) −0.0139 (9) −0.0050 (8) −0.0195 (8)
C8 0.1198 (19) 0.0369 (10) 0.0579 (11) −0.0176 (11) −0.0180 (12) −0.0135 (9)
C9 0.1173 (19) 0.0424 (11) 0.0682 (13) 0.0069 (12) −0.0304 (13) −0.0318 (11)
C10 0.0825 (14) 0.0554 (13) 0.0681 (12) 0.0154 (11) −0.0139 (11) −0.0404 (11)
C11 0.0606 (11) 0.0472 (10) 0.0508 (9) 0.0030 (8) −0.0065 (8) −0.0270 (8)
C12 0.0437 (8) 0.0336 (8) 0.0296 (6) −0.0073 (6) −0.0062 (6) −0.0133 (6)
C13 0.0389 (8) 0.0399 (8) 0.0318 (6) −0.0070 (6) −0.0048 (5) −0.0169 (6)
C14 0.0535 (9) 0.0424 (9) 0.0381 (7) −0.0110 (7) −0.0083 (7) −0.0159 (7)
C15 0.0673 (11) 0.0535 (11) 0.0351 (7) −0.0152 (9) −0.0103 (7) −0.0121 (7)
C16 0.0647 (11) 0.0714 (12) 0.0373 (8) −0.0169 (9) −0.0089 (7) −0.0259 (8)
C17 0.0796 (13) 0.0655 (12) 0.0489 (9) −0.0297 (10) −0.0047 (9) −0.0319 (9)
C18 0.0729 (11) 0.0462 (10) 0.0401 (8) −0.0219 (9) −0.0068 (7) −0.0185 (7)
C19 0.0473 (8) 0.0349 (8) 0.0345 (7) −0.0031 (6) −0.0063 (6) −0.0178 (6)
C20 0.0433 (8) 0.0310 (8) 0.0377 (7) −0.0040 (6) −0.0089 (6) −0.0147 (6)
O4 0.0457 (6) 0.0578 (7) 0.0484 (6) −0.0068 (5) −0.0069 (5) −0.0307 (5)
O5 0.0463 (7) 0.0703 (9) 0.0469 (6) −0.0138 (6) 0.0031 (5) −0.0278 (6)
O6 0.0574 (7) 0.0369 (6) 0.0519 (6) 0.0084 (5) −0.0180 (5) −0.0208 (5)
N3 0.0532 (8) 0.0281 (6) 0.0330 (6) −0.0011 (6) −0.0095 (5) −0.0127 (5)
N4 0.0457 (7) 0.0334 (7) 0.0376 (6) 0.0016 (5) −0.0151 (5) −0.0153 (5)
C21 0.0918 (17) 0.138 (2) 0.0565 (12) −0.0486 (17) −0.0013 (11) −0.0430 (14)
C22 0.0572 (11) 0.0839 (15) 0.0658 (11) −0.0121 (10) −0.0084 (9) −0.0473 (11)
C23 0.0407 (8) 0.0339 (8) 0.0371 (7) −0.0056 (6) −0.0057 (6) −0.0125 (6)
C24 0.0371 (7) 0.0298 (7) 0.0365 (7) −0.0056 (6) −0.0067 (6) −0.0135 (6)
C25 0.0392 (8) 0.0317 (7) 0.0345 (7) −0.0078 (6) −0.0035 (6) −0.0147 (6)
C26 0.0438 (8) 0.0291 (7) 0.0308 (6) −0.0078 (6) −0.0028 (6) −0.0102 (5)
C27 0.0544 (9) 0.0379 (9) 0.0448 (8) −0.0139 (7) −0.0019 (7) −0.0195 (7)
C28 0.0743 (12) 0.0413 (10) 0.0583 (10) −0.0139 (9) −0.0057 (9) −0.0283 (8)
C29 0.0729 (13) 0.0411 (10) 0.0493 (9) 0.0018 (9) −0.0049 (8) −0.0246 (8)
C30 0.0484 (9) 0.0466 (10) 0.0437 (8) −0.0005 (8) −0.0059 (7) −0.0172 (7)
C31 0.0480 (9) 0.0337 (8) 0.0390 (7) −0.0067 (7) −0.0072 (6) −0.0136 (6)
C32 0.0421 (8) 0.0361 (8) 0.0343 (7) −0.0079 (6) −0.0061 (6) −0.0159 (6)
C33 0.0562 (9) 0.0323 (8) 0.0337 (7) −0.0094 (7) −0.0066 (6) −0.0132 (6)
C34 0.0594 (10) 0.0439 (9) 0.0428 (8) −0.0152 (8) −0.0127 (7) −0.0122 (7)
C35 0.0842 (14) 0.0527 (11) 0.0542 (10) −0.0224 (10) −0.0298 (10) −0.0119 (9)
C36 0.1207 (19) 0.0562 (12) 0.0440 (9) −0.0227 (12) −0.0246 (11) −0.0188 (9)
C37 0.1040 (18) 0.0973 (18) 0.0479 (10) −0.0151 (14) −0.0004 (11) −0.0434 (11)
C38 0.0660 (12) 0.0847 (15) 0.0489 (10) −0.0016 (10) −0.0067 (9) −0.0354 (10)
C39 0.0456 (8) 0.0322 (8) 0.0383 (7) −0.0038 (6) −0.0110 (6) −0.0172 (6)
C40 0.0409 (8) 0.0299 (7) 0.0386 (7) −0.0064 (6) −0.0070 (6) −0.0131 (6)

Geometric parameters (Å, º)

O1—C3 1.317 (2) O4—C23 1.3300 (18)
O1—C2 1.4566 (19) O4—C22 1.456 (2)
O2—C3 1.1976 (19) O5—C23 1.1986 (19)
O3—C20 1.2283 (18) O6—C40 1.2306 (17)
N1—C12 1.4578 (19) N3—C25 1.4609 (17)
N1—C5 1.4637 (16) N3—C32 1.467 (2)
N1—H1 0.83 (2) N3—H3 0.84 (2)
N2—C20 1.3389 (19) N4—C40 1.3347 (19)
N2—C4 1.4550 (18) N4—C24 1.4538 (18)
N2—H2 0.85 (2) N4—H4A 0.85 (2)
C1—C2 1.461 (3) C21—C22 1.472 (3)
C1—H1A 0.9600 C21—H21A 0.9600
C1—H1B 0.9600 C21—H21B 0.9600
C1—H1C 0.9600 C21—H21C 0.9600
C2—H2A 0.9700 C22—H22A 0.9700
C2—H2B 0.9700 C22—H22B 0.9700
C3—C4 1.5163 (19) C23—C24 1.506 (2)
C4—C5 1.5496 (19) C24—C25 1.551 (2)
C4—H4 0.9800 C24—H24 0.9800
C5—C6 1.506 (2) C25—C26 1.511 (2)
C5—H5 0.9800 C25—H25 0.9800
C6—C7 1.384 (2) C26—C31 1.385 (2)
C6—C11 1.385 (2) C26—C27 1.394 (2)
C7—C8 1.377 (3) C27—C28 1.376 (2)
C7—H7 0.9300 C27—H27 0.9300
C8—C9 1.368 (3) C28—C29 1.372 (3)
C8—H8 0.9300 C28—H28 0.9300
C9—C10 1.357 (3) C29—C30 1.384 (3)
C9—H9 0.9300 C29—H29 0.9300
C10—C11 1.375 (3) C30—C31 1.378 (2)
C10—H10 0.9300 C30—H30 0.9300
C11—H11 0.9300 C31—H31 0.9300
C12—C13 1.5239 (17) C32—C33 1.5236 (18)
C12—C19 1.538 (2) C32—C39 1.529 (2)
C12—H12 0.9800 C32—H32 0.9800
C13—C18 1.380 (2) C33—C38 1.360 (3)
C13—C14 1.381 (2) C33—C34 1.375 (2)
C14—C15 1.3845 (19) C34—C35 1.393 (2)
C14—H14 0.9300 C34—H34 0.9300
C15—C16 1.370 (3) C35—C36 1.357 (3)
C15—H15 0.9300 C35—H35 0.9300
C16—C17 1.361 (3) C36—C37 1.350 (3)
C16—H16 0.9300 C36—H36 0.9300
C17—C18 1.386 (2) C37—C38 1.399 (2)
C17—H17 0.9300 C37—H37 0.9300
C18—H18 0.9300 C38—H38 0.9300
C19—C20 1.5107 (18) C39—C40 1.5162 (17)
C19—H19A 0.9700 C39—H39A 0.9700
C19—H19B 0.9700 C39—H39B 0.9700
C3—O1—C2 115.98 (14) C23—O4—C22 116.14 (13)
C12—N1—C5 117.12 (11) C25—N3—C32 116.90 (11)
C12—N1—H1 105.4 (12) C25—N3—H3 106.1 (12)
C5—N1—H1 103.2 (12) C32—N3—H3 104.6 (12)
C20—N2—C4 125.40 (12) C40—N4—C24 125.62 (11)
C20—N2—H2 116.9 (12) C40—N4—H4A 114.4 (12)
C4—N2—H2 117.7 (12) C24—N4—H4A 119.4 (12)
C2—C1—H1A 109.5 C22—C21—H21A 109.5
C2—C1—H1B 109.5 C22—C21—H21B 109.5
H1A—C1—H1B 109.5 H21A—C21—H21B 109.5
C2—C1—H1C 109.5 C22—C21—H21C 109.5
H1A—C1—H1C 109.5 H21A—C21—H21C 109.5
H1B—C1—H1C 109.5 H21B—C21—H21C 109.5
O1—C2—C1 108.45 (18) O4—C22—C21 112.10 (18)
O1—C2—H2A 110.0 O4—C22—H22A 109.2
C1—C2—H2A 110.0 C21—C22—H22A 109.2
O1—C2—H2B 110.0 O4—C22—H22B 109.2
C1—C2—H2B 110.0 C21—C22—H22B 109.2
H2A—C2—H2B 108.4 H22A—C22—H22B 107.9
O2—C3—O1 125.40 (14) O5—C23—O4 124.41 (14)
O2—C3—C4 123.26 (15) O5—C23—C24 124.07 (13)
O1—C3—C4 111.28 (13) O4—C23—C24 111.37 (13)
N2—C4—C3 107.04 (11) N4—C24—C23 110.14 (11)
N2—C4—C5 112.95 (12) N4—C24—C25 113.96 (12)
C3—C4—C5 108.33 (12) C23—C24—C25 109.29 (12)
N2—C4—H4 109.5 N4—C24—H24 107.7
C3—C4—H4 109.5 C23—C24—H24 107.7
C5—C4—H4 109.5 C25—C24—H24 107.7
N1—C5—C6 108.35 (11) N3—C25—C26 108.37 (11)
N1—C5—C4 110.42 (12) N3—C25—C24 109.46 (11)
C6—C5—C4 110.90 (12) C26—C25—C24 110.26 (12)
N1—C5—H5 109.0 N3—C25—H25 109.6
C6—C5—H5 109.0 C26—C25—H25 109.6
C4—C5—H5 109.0 C24—C25—H25 109.6
C7—C6—C11 118.05 (16) C31—C26—C27 118.31 (14)
C7—C6—C5 121.24 (15) C31—C26—C25 120.95 (13)
C11—C6—C5 120.60 (15) C27—C26—C25 120.63 (13)
C8—C7—C6 120.29 (19) C28—C27—C26 119.95 (16)
C8—C7—H7 119.9 C28—C27—H27 120.0
C6—C7—H7 119.9 C26—C27—H27 120.0
C9—C8—C7 120.7 (2) C29—C28—C27 121.13 (17)
C9—C8—H8 119.6 C29—C28—H28 119.4
C7—C8—H8 119.6 C27—C28—H28 119.4
C10—C9—C8 119.57 (19) C28—C29—C30 119.71 (16)
C10—C9—H9 120.2 C28—C29—H29 120.1
C8—C9—H9 120.2 C30—C29—H29 120.1
C9—C10—C11 120.5 (2) C31—C30—C29 119.30 (16)
C9—C10—H10 119.8 C31—C30—H30 120.4
C11—C10—H10 119.8 C29—C30—H30 120.4
C10—C11—C6 120.86 (19) C30—C31—C26 121.60 (15)
C10—C11—H11 119.6 C30—C31—H31 119.2
C6—C11—H11 119.6 C26—C31—H31 119.2
N1—C12—C13 109.03 (11) N3—C32—C33 108.08 (11)
N1—C12—C19 111.03 (12) N3—C32—C39 111.54 (13)
C13—C12—C19 110.09 (11) C33—C32—C39 109.35 (11)
N1—C12—H12 108.9 N3—C32—H32 109.3
C13—C12—H12 108.9 C33—C32—H32 109.3
C19—C12—H12 108.9 C39—C32—H32 109.3
C18—C13—C14 118.12 (13) C38—C33—C34 117.67 (14)
C18—C13—C12 119.56 (13) C38—C33—C32 120.40 (14)
C14—C13—C12 122.33 (13) C34—C33—C32 121.88 (14)
C13—C14—C15 120.77 (15) C33—C34—C35 120.62 (18)
C13—C14—H14 119.6 C33—C34—H34 119.7
C15—C14—H14 119.6 C35—C34—H34 119.7
C16—C15—C14 120.35 (16) C36—C35—C34 120.89 (19)
C16—C15—H15 119.8 C36—C35—H35 119.6
C14—C15—H15 119.8 C34—C35—H35 119.6
C17—C16—C15 119.46 (15) C37—C36—C35 119.06 (17)
C17—C16—H16 120.3 C37—C36—H36 120.5
C15—C16—H16 120.3 C35—C36—H36 120.5
C16—C17—C18 120.59 (16) C36—C37—C38 120.3 (2)
C16—C17—H17 119.7 C36—C37—H37 119.8
C18—C17—H17 119.7 C38—C37—H37 119.8
C13—C18—C17 120.70 (15) C33—C38—C37 121.42 (19)
C13—C18—H18 119.7 C33—C38—H38 119.3
C17—C18—H18 119.7 C37—C38—H38 119.3
C20—C19—C12 114.10 (12) C40—C39—C32 116.77 (12)
C20—C19—H19A 108.7 C40—C39—H39A 108.1
C12—C19—H19A 108.7 C32—C39—H39A 108.1
C20—C19—H19B 108.7 C40—C39—H39B 108.1
C12—C19—H19B 108.7 C32—C39—H39B 108.1
H19A—C19—H19B 107.6 H39A—C39—H39B 107.3
O3—C20—N2 121.37 (13) O6—C40—N4 120.90 (12)
O3—C20—C19 120.51 (13) O6—C40—C39 120.65 (13)
N2—C20—C19 118.12 (13) N4—C40—C39 118.44 (13)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C33–C38 and C26–C31 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N2—H2···O2 0.85 (2) 2.45 (2) 2.776 (2) 104
N2—H2···O6i 0.85 (2) 2.26 (2) 3.091 (1) 170
N4—H4A···O3ii 0.85 (2) 2.14 (2) 2.983 (1) 169
C2—H2B···O2iii 0.97 2.53 3.233 (2) 130
C39—H39A···O5iv 0.97 2.48 3.355 (2) 150
C9—H9···Cg1v 0.93 2.89 3.735 (3) 152
C16—H16···Cg2vi 0.93 2.91 3.712 (1) 146

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) −x+1, −y, −z; (iv) −x, −y+1, −z+2; (v) −x+1, −y, −z+1; (vi) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2527).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gopalakrishnan, M., Sureshkumar, P., Thanusu, J., Kanagarajan, V., Govindaraju, R. & Jayasri, G. (2007). J. Enzyme Inhib. Med. Chem. 22, 709–715. [DOI] [PubMed]
  6. Kumar, S. S., Kavitha, H. P., Vennila, J. P., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o3211. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wlodarczyk, N., Gilleron, P., Millet, R., Houssin, R., Goossens, J.-F., Lemoine, A., Pommery, N., Wei, M. X. & Henichart, J.-P. (2005). Oncol. Res. 16, 107–118. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017084/pv2527sup1.cif

e-68-o1525-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017084/pv2527Isup2.hkl

e-68-o1525-Isup2.hkl (461.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017084/pv2527Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES