Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 25;68(Pt 5):o1532. doi: 10.1107/S1600536812017278

2-Amino-6-(dimethyl­amino)pyridine-3,5-dicarbonitrile

Shaaban K Mohamed a, Ahmed M Soliman b, Eman M M Abdel-Raheem b, Sohail Saeed c,*, Wing-Tak Wong d
PMCID: PMC3344634  PMID: 22590396

Abstract

The title compound, C9H9N5, is slightly twisted from planarity, with a maximum deviation of 0.0285 (13) Å from the pyridine plane for the C atom bearing the amino group. The cyano groups are on different sides of the pyridine plane, with C- and N-atom deviations of 0.072 (3)/0.124 (4) and −0.228 (4)/−0.409 (5) Å from the pyridine plane. In the crystal, N—H⋯N and C—H⋯N hydrogen bonds connect the mol­ecules into zigzag chains running along the c axis.

Related literature  

For the synthesis of similar structures, see: Horton et al. (2012a ,b ); Soliman et al. (2012). For the biological significance of cyano­amino pyridines, see: Al-Haiza et al. (2003); Bhalerao & Krishnaiah (1995); Deo et al. (1990); Murata et al. (2003); Konda et al. (2010); Altomare et al. (2000); Hosni & Abdulla (2008); Shishoo et al. (1983).graphic file with name e-68-o1532-scheme1.jpg

Experimental  

Crystal data  

  • C9H9N5

  • M r = 187.21

  • Monoclinic, Inline graphic

  • a = 28.667 (7) Å

  • b = 3.9702 (10) Å

  • c = 17.950 (4) Å

  • β = 112.920 (3)°

  • V = 1881.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.21 × 0.03 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.972, T max = 0.997

  • 4846 measured reflections

  • 1658 independent reflections

  • 1173 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.147

  • S = 1.03

  • 1658 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017278/im2369sup1.cif

e-68-o1532-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017278/im2369Isup2.hkl

e-68-o1532-Isup2.hkl (81.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017278/im2369Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N3i 0.88 (3) 2.25 (3) 3.119 (3) 167 (2)
N2—H2⋯N1ii 0.88 (3) 2.43 (3) 3.260 (3) 158 (3)
C3—H3⋯N4iii 0.93 2.55 3.471 (4) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are thankful to the University of Hong Kong for providing the single-crystal X-ray crystallography facility.

supplementary crystallographic information

Comment

In continuation of our research interest in the synthesis of potential biologically active molecules (Soliman et al., 2012; Horton et al., 2012a,b), we got prompted to study the chemical and pharmacological characterization of new cyano-amino pyridine derivatives due to their vibrant chemical activities. Hence cyano-amino pyridines have been considered as convenient synthons due to their diverse applications particularly in organic synthesis (Shishoo et al., 1983; Deo et al., 1990; Bhalerao & Krishnaiah, 1995; Al-Haiza et al., 2003) and medicinal chemistry (Altomare et al., 2000; Hosni & Abdulla, 2008; Murata et al., 2003; Konda et al., 2010).

The title compound, 2-amino-6-(dimethylamino)-pyridine-3,5-dicarbonitrile, is slightly twisted. The maximum deviation from the mean plane of the pyridyl ring, N1/C1—C5 (marked with asterisk) is 0.0285 (13) Angstrom. The cyano groups are flipped to different sides of the pyridine plane with atoms C6 & N3 showing deviations of +0.072 (3) Å and +0.124 (4) Å, while atoms C7 & N4 are bent out of the pyridine plane by -0.228 (4) Å and -0.409 (5) Å, respectively.

Hydrogen bonding interactions are observed in the crystal lattice connecting the molecules into zigzag chains running along the c-axis. As it is expected, N—H···N interactions are shorter as the observed N4···H3(–C3) distance.

Experimental

The title compound (1) was obtained as a by-product from the reaction of 2-amino-6-chloropyridine-3,5-dicarbonitrile (1 mmol; 179 mg) with amino guanidine (1 mmol; 74 mg) in dimethylformamide. The reaction mixture was refluxed for 4 h at 426 K and then poured on cold water. A solid product was filtered off, dried and recrystallized from ethanol to afford cupric needles which were suitable for X-Ray diffraction without further recrystallization. Yield 45% and m.p. 453 K.

Refinement

The structure was solved by direct methods (SHELXS97, Sheldrick, 2008) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

C-bound H atoms are all placed at geometrical positions with C—H = 0.93 and 0.96 Å for phenyl and methyl H-atoms, respectively. C-bound phenyl hydrogen atoms are refined using a riding model with Uiso(H) = 1.2Ueq(C), methyl H-atoms are refined using a riding model with Uiso(H) = 1.5Ueq(C). N-bound H atoms were located from the difference Fourier map and were refined isotropically.

Highest peak is 0.16 at (0.1967, 0.2214, 0.0041) [1.04 Å from H8C] Deepest hole is -0.19 at (0.1226, 0.1471, 0.2613) [1.01 Å from C5]

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing thermal ellipsoids on the 50% probability level.

Crystal data

C9H9N5 F(000) = 784
Mr = 187.21 Dx = 1.322 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4846 reflections
a = 28.667 (7) Å θ = 3.1–25.0°
b = 3.9702 (10) Å µ = 0.09 mm1
c = 17.950 (4) Å T = 296 K
β = 112.920 (3)° Plate, yellow
V = 1881.7 (8) Å3 0.32 × 0.21 × 0.03 mm
Z = 8

Data collection

Bruker SMART 1000 CCD diffractometer 1658 independent reflections
Radiation source: fine-focus sealed tube 1173 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
ω and φ scans θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −33→34
Tmin = 0.972, Tmax = 0.997 k = −4→4
4846 measured reflections l = −21→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0915P)2 + 0.1839P] where P = (Fo2 + 2Fc2)/3
1658 reflections (Δ/σ)max < 0.001
138 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.07712 (6) 0.0877 (4) 0.27256 (9) 0.0417 (5)
N2 0.00997 (6) 0.2230 (6) 0.15638 (13) 0.0573 (6)
H1 −0.0050 (9) 0.284 (6) 0.1053 (17) 0.068 (8)*
H2 −0.0096 (12) 0.128 (8) 0.1777 (19) 0.094 (9)*
N3 0.05670 (8) 0.6406 (6) 0.02533 (12) 0.0669 (6)
N4 0.25896 (8) 0.0677 (9) 0.35083 (15) 0.1042 (10)
N5 0.14100 (6) −0.0606 (5) 0.39210 (10) 0.0488 (5)
C1 0.06018 (7) 0.2187 (5) 0.19854 (12) 0.0415 (5)
C2 0.09339 (7) 0.3580 (5) 0.16489 (12) 0.0431 (5)
C3 0.14482 (7) 0.3269 (6) 0.20982 (13) 0.0499 (6)
H3 0.1676 0.4079 0.1887 0.060*
C4 0.16300 (7) 0.1796 (5) 0.28473 (13) 0.0463 (5)
C5 0.12699 (7) 0.0699 (5) 0.31732 (12) 0.0413 (5)
C6 0.07369 (8) 0.5132 (6) 0.08746 (14) 0.0498 (6)
C7 0.21622 (9) 0.1175 (7) 0.32283 (15) 0.0673 (7)
C8 0.18827 (9) 0.0208 (8) 0.45832 (15) 0.0782 (8)
H8A 0.1828 0.0356 0.5077 0.117*
H8B 0.2006 0.2328 0.4478 0.117*
H8C 0.2127 −0.1520 0.4634 0.117*
C9 0.10351 (8) −0.2200 (6) 0.41700 (13) 0.0561 (6)
H9A 0.1197 −0.3882 0.4572 0.084*
H9B 0.0778 −0.3238 0.3710 0.084*
H9C 0.0884 −0.0530 0.4392 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0341 (9) 0.0539 (10) 0.0397 (10) −0.0009 (7) 0.0172 (7) −0.0014 (8)
N2 0.0344 (10) 0.0948 (16) 0.0427 (12) −0.0056 (9) 0.0150 (9) 0.0117 (11)
N3 0.0644 (13) 0.0872 (15) 0.0559 (13) −0.0010 (11) 0.0308 (11) 0.0131 (12)
N4 0.0412 (12) 0.175 (3) 0.0971 (19) 0.0216 (15) 0.0270 (12) −0.0016 (19)
N5 0.0376 (9) 0.0639 (11) 0.0435 (10) 0.0045 (8) 0.0142 (8) 0.0037 (9)
C1 0.0364 (10) 0.0501 (12) 0.0411 (12) −0.0021 (8) 0.0186 (9) −0.0048 (9)
C2 0.0404 (11) 0.0522 (12) 0.0425 (12) −0.0026 (9) 0.0224 (9) −0.0020 (10)
C3 0.0419 (12) 0.0610 (13) 0.0572 (14) −0.0054 (9) 0.0307 (11) −0.0060 (11)
C4 0.0332 (11) 0.0580 (13) 0.0515 (13) 0.0009 (9) 0.0205 (9) −0.0041 (11)
C5 0.0348 (10) 0.0455 (11) 0.0449 (12) 0.0010 (8) 0.0169 (9) −0.0067 (9)
C6 0.0468 (12) 0.0611 (14) 0.0509 (14) −0.0040 (10) 0.0292 (11) −0.0023 (12)
C7 0.0445 (14) 0.0956 (19) 0.0682 (17) 0.0067 (12) 0.0288 (12) −0.0019 (14)
C8 0.0492 (14) 0.108 (2) 0.0642 (17) 0.0041 (14) 0.0074 (12) 0.0105 (16)
C9 0.0532 (13) 0.0662 (14) 0.0575 (14) 0.0078 (11) 0.0310 (12) 0.0106 (12)

Geometric parameters (Å, º)

N1—C1 1.330 (2) C2—C6 1.421 (3)
N1—C5 1.341 (2) C3—C4 1.370 (3)
N2—C1 1.340 (3) C3—H3 0.9300
N2—H1 0.88 (3) C4—C7 1.429 (3)
N2—H2 0.88 (3) C4—C5 1.438 (3)
N3—C6 1.146 (3) C8—H8A 0.9600
N4—C7 1.146 (3) C8—H8B 0.9600
N5—C5 1.346 (3) C8—H8C 0.9600
N5—C8 1.449 (3) C9—H9A 0.9600
N5—C9 1.459 (3) C9—H9B 0.9600
C1—C2 1.423 (3) C9—H9C 0.9600
C2—C3 1.383 (3)
C1—N1—C5 120.56 (16) C7—C4—C5 123.7 (2)
C1—N2—H1 124.9 (15) N1—C5—N5 116.88 (16)
C1—N2—H2 118 (2) N1—C5—C4 120.45 (18)
H1—N2—H2 116 (3) N5—C5—C4 122.66 (18)
C5—N5—C8 123.56 (19) N3—C6—C2 178.3 (2)
C5—N5—C9 120.21 (17) N4—C7—C4 177.7 (3)
C8—N5—C9 114.24 (18) N5—C8—H8A 109.5
N1—C1—N2 117.60 (18) N5—C8—H8B 109.5
N1—C1—C2 122.11 (18) H8A—C8—H8B 109.5
N2—C1—C2 120.28 (19) N5—C8—H8C 109.5
C3—C2—C6 122.45 (17) H8A—C8—H8C 109.5
C3—C2—C1 117.08 (19) H8B—C8—H8C 109.5
C6—C2—C1 120.45 (17) N5—C9—H9A 109.5
C4—C3—C2 121.48 (18) N5—C9—H9B 109.5
C4—C3—H3 119.3 H9A—C9—H9B 109.5
C2—C3—H3 119.3 N5—C9—H9C 109.5
C3—C4—C7 118.05 (19) H9A—C9—H9C 109.5
C3—C4—C5 118.02 (18) H9B—C9—H9C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1···N3i 0.88 (3) 2.25 (3) 3.119 (3) 167 (2)
N2—H2···N1ii 0.88 (3) 2.43 (3) 3.260 (3) 158 (3)
C3—H3···N4iii 0.93 2.55 3.471 (4) 170

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2369).

References

  1. Al-Haiza, M. A., Mostafa, M. S. & El-Kady, M. Y. (2003). Molecules, 8, 275–286.
  2. Altomare, C., Cellamare, S., Summo, L., Fossa, P., Mosti, L. & Carotti, A. (2000). Bioorg. Med. Chem. 8, 909–916. [DOI] [PubMed]
  3. Bhalerao, U. T. & Krishnaiah, A. (1995). Indian J. Chem. Sect. B, 34, 587–590.
  4. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Deo, K., Avasthi, K., Pratap, R., Bhakuni, D. S. & Joshi, M. N. (1990). Indian J. Chem. Sect. B, 29, 459–463.
  7. Horton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012a). Acta Cryst. E68, o938. [DOI] [PMC free article] [PubMed]
  8. Horton, P. N., Mohamed, S. K., Soliman, A. M., Abdel-Raheem, E. M. M. & Akkurt, M. (2012b). Acta Cryst. E68, o885–o886. [DOI] [PMC free article] [PubMed]
  9. Hosni, H. M. & Abdulla, M. M. (2008). Acta Pharm. 58, 175–186. [DOI] [PubMed]
  10. Konda, S. G., Khedkar, V. T. & Dawane, B. S. (2010). J. Chem. Pharm. Res. 2, 187–191.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Kadono, H., Masuda, T., Shimazaki, M., Shintani, T., Fuchikami, K., Sakai, K., Inbe, H., Takeshita, K., Niki, T., Umeda, M., Bacon, K. B., Ziegelbauer, K. B. & Lowinger, T. B. (2003). Bioorg. Med. Chem. Lett. 13, 913–918. [DOI] [PubMed]
  13. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. 24, 4611–4612.
  16. Soliman, A. M., Mohamed, S. K., El Remaily, M. A. A. & Abdel-Ghany, H. (2012). Eur. J. Med. Chem. 47, 138–142. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017278/im2369sup1.cif

e-68-o1532-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017278/im2369Isup2.hkl

e-68-o1532-Isup2.hkl (81.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017278/im2369Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES