Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 28;68(Pt 5):o1542. doi: 10.1107/S1600536812017539

4′-tert-Butyl-5-chloro-3H-spiro­[1,3-benzothia­zole-2,1′-cyclo­hexa­ne]

Mehmet Akkurt a,*, Gökçe Cihan-Üstündağ b, Gültaze Çapan b, Yılmaz Dağdemir a, Muhammad Nawaz Tahir c
PMCID: PMC3344643  PMID: 22590405

Abstract

In the title compound, C16H22ClNS, the nine-membered 2,3-dihydro-1,3-benzothia­zole ring system is essentially planar, with a maximum deviation of 0.025 (2) Å for the N atom. Its plane is almost perpendicular to the main plane of the substituted cyclo­hexane ring, which adopts a chair conformation. In the crystal, the molecules are linked by C—H⋯π inter­actions.

Related literature  

For the pharmacological activity of benzothia­zole derivatives, see: Coudert et al. (1988); Karalı et al. (2010); Palmer et al. (1971). For the crystal structures of similar compounds, see, for example: Akkurt et al. (2010); Aryai et al. (1976); Karalı et al. (2010). For standard values of bond lengths, see: Allen et al. (1987). For details of ring-puckering analysis, see: Cremer & Pople (1975).graphic file with name e-68-o1542-scheme1.jpg

Experimental  

Crystal data  

  • C16H22ClNS

  • M r = 295.87

  • Monoclinic, Inline graphic

  • a = 15.2810 (18) Å

  • b = 8.9830 (8) Å

  • c = 11.8750 (13) Å

  • β = 109.580 (3)°

  • V = 1535.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.27 × 0.20 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.915, T max = 0.935

  • 14074 measured reflections

  • 3849 independent reflections

  • 2330 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.128

  • S = 1.02

  • 3849 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017539/su2411sup1.cif

e-68-o1542-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017539/su2411Isup2.hkl

e-68-o1542-Isup2.hkl (188.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017539/su2411Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg1i 0.97 2.84 3.796 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

The condensation of aldehydes and ketones with 2-aminothiophenoles lead to benzothiazolines and spirobenzothiazolines which are reported to exhibit antitubercular (Palmer et al., 1971), analgesic (Coudert et al., 1988) and antioxidant (Karalı et al., 2010) properties. The reactivity of cyclic ketones towards 2-aminothiophenoles has also been examined and the structure of the end products has been discussed (Aryai et al., 1976; Coudert et al., 1988; Akkurt et al., 2010; Karalı et al., 2010). Prompted by the above observations, we report here the synthesis, spectroscopic and crystal structure of the title compound.

As shown in Fig. 1, the C7—C12 cyclohexane ring of the title compound adopts a chair conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.564 (2) Å, θ = 176.5 (2) ° and φ = 4(4) °]. The mean plane of the 2,3-dihydro-1,3-benzothiazole ring system [max. deviation: -0.025 (2) Å for N1] is almost perpendicular with a dihedral angle of 89.39 (5) ° to the main plane formed by the C8,C9, C11 and C12 atoms of the cyclohexane ring. The bond lengths (Allen et al., 1987) and bond angles are within the expected values.

The crystal packing is stabilized by C—H···π interactions (Table 1 and Fig. 2).

Experimental

A mixture of 2-amino-4-chlorothiophenol (0.01 mol) and 4-tert-butylcyclohexanone (0.01 mol) in absolute ethanol (50 ml) was refluxed on a water bath for 8 h. The solvent was evaporated in a crystallizing dish at room temperature and the residue was recrystallized twice from ethanol, giving X-ray quality crystals [Yield: 24.3%, m.p.: 453–455 K]. Analysis calculated for C16H22ClNS: C 64.95, H 7.49, N 4.73%. Found: C 64.91, H 7.47, N 4.64%. Spectroscopic data for the title compound are given in the archive CIF.

Refinement

The NH H atom was located in a difference Fourier map and freely refined. C-bound H atoms were placed in calculated positions and treated as riding atoms : C—H = 0.93, 0.96, 0.97 and 0.98 Å, for the aromatic, methyl, methylene and methine H atoms, respectively, with Uiso(H) = xUeq(C), x = 1.5 for methyl H atoms and = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewing along b axis [H atoms have been omitted for clarity].

Crystal data

C16H22ClNS F(000) = 632
Mr = 295.87 Dx = 1.280 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 776 reflections
a = 15.2810 (18) Å θ = 3.3–19.5°
b = 8.9830 (8) Å µ = 0.37 mm1
c = 11.8750 (13) Å T = 296 K
β = 109.580 (3)° Prism, colourless
V = 1535.8 (3) Å3 0.27 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3849 independent reflections
Radiation source: fine-focus sealed tube 2330 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
ω scans θmax = 28.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −20→20
Tmin = 0.915, Tmax = 0.935 k = −11→10
14074 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2285P] where P = (Fo2 + 2Fc2)/3
3849 reflections (Δ/σ)max < 0.001
179 parameters Δρmax = 0.25 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Experimental. Spectroscopic data for the title compound: IR (KBr) ν = 3370 (N—H), 2962, 2912, 2862 (C—H), 1585, 1571, 1473, 1442 (C=C) cm-1; 1H-NMR (DMSO-d6, 500 MHz) d= 0.83–0.86 (9H, m, 4'-C(CH3)3-cyc.), 0.95–1.02 (1H, m, CH/CH2-cyc.), 1.09–1.36 (2H, m, CH/CH2-cyc.), 1.58–1.72 (4H, m, CH/CH2-cyc.), 2.15–2.22 (2H, m, CH/CH2-cyc.), 6.40, 6.47 (1H, 2 d, J=2.0 Hz, H4-bt.), 6.50 (1H, dd, J=8.1, 2.0 Hz, H6-bt.), 6.90 (1H, d, J=7.8 Hz, H7-bt.), 6.73, 6.97 (1H, 2 s, NH) p.p.m. (cyc.=cyclohexane, bt.=benzothiazole).
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.35486 (5) 0.80459 (8) 0.13722 (7) 0.0761 (3)
S1 0.02827 (4) 0.69814 (6) 0.07426 (5) 0.0503 (2)
N1 −0.00626 (14) 0.8895 (2) 0.2213 (2) 0.0628 (8)
C1 −0.08493 (14) 0.7159 (2) 0.07911 (17) 0.0369 (7)
C2 −0.16334 (16) 0.6409 (2) 0.0125 (2) 0.0474 (8)
C3 −0.24750 (16) 0.6684 (2) 0.0286 (2) 0.0515 (8)
C4 −0.25028 (16) 0.7710 (2) 0.1132 (2) 0.0469 (8)
C5 −0.17272 (16) 0.8482 (2) 0.1807 (2) 0.0447 (7)
C6 −0.08920 (15) 0.8210 (2) 0.16337 (18) 0.0390 (7)
C7 0.07535 (15) 0.8422 (2) 0.1936 (2) 0.0442 (7)
C8 0.11774 (16) 0.9705 (2) 0.1463 (2) 0.0519 (8)
C9 0.20566 (15) 0.9285 (2) 0.1218 (2) 0.0500 (8)
C10 0.27931 (14) 0.8647 (2) 0.23261 (18) 0.0408 (7)
C11 0.23620 (15) 0.7316 (2) 0.27578 (19) 0.0438 (7)
C12 0.14820 (15) 0.7730 (2) 0.30136 (19) 0.0467 (8)
C13 0.37389 (16) 0.8291 (2) 0.2176 (2) 0.0509 (8)
C14 0.4048 (2) 0.9596 (3) 0.1572 (3) 0.0845 (14)
C15 0.44715 (18) 0.8047 (3) 0.3408 (2) 0.0800 (11)
C16 0.36933 (18) 0.6896 (3) 0.1415 (2) 0.0651 (10)
H1N −0.0005 (17) 0.955 (2) 0.2742 (16) 0.070 (8)*
H2 −0.16000 0.57120 −0.04380 0.0570*
H3 −0.30100 0.61850 −0.01690 0.0620*
H5 −0.17650 0.91750 0.23700 0.0540*
H8A 0.07240 1.00700 0.07300 0.0620*
H8B 0.13160 1.05100 0.20410 0.0620*
H9A 0.23040 1.01600 0.09520 0.0600*
H9B 0.19090 0.85550 0.05810 0.0600*
H10 0.29130 0.94100 0.29500 0.0490*
H11A 0.22180 0.65430 0.21530 0.0520*
H11B 0.28120 0.69160 0.34790 0.0520*
H12A 0.12260 0.68450 0.32520 0.0560*
H12B 0.16360 0.84290 0.36740 0.0560*
H14A 0.46750 0.94360 0.15950 0.1270*
H14B 0.40160 1.05020 0.19850 0.1270*
H14C 0.36470 0.96690 0.07550 0.1270*
H15A 0.50660 0.78790 0.33200 0.1200*
H15B 0.43040 0.71970 0.37820 0.1200*
H15C 0.45040 0.89120 0.38960 0.1200*
H16A 0.31930 0.69930 0.06700 0.0980*
H16B 0.35900 0.60370 0.18350 0.0980*
H16C 0.42680 0.67840 0.12620 0.0980*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0543 (4) 0.0816 (5) 0.1046 (6) 0.0027 (3) 0.0428 (4) −0.0018 (4)
S1 0.0456 (3) 0.0510 (4) 0.0568 (4) −0.0017 (3) 0.0203 (3) −0.0182 (3)
N1 0.0467 (12) 0.0636 (14) 0.0770 (15) −0.0030 (10) 0.0191 (11) −0.0390 (12)
C1 0.0441 (12) 0.0319 (11) 0.0363 (11) 0.0025 (9) 0.0158 (9) 0.0017 (8)
C2 0.0533 (14) 0.0404 (12) 0.0483 (13) −0.0035 (10) 0.0168 (11) −0.0086 (10)
C3 0.0460 (14) 0.0488 (14) 0.0571 (15) −0.0096 (11) 0.0139 (12) −0.0054 (11)
C4 0.0438 (13) 0.0414 (12) 0.0586 (15) 0.0046 (10) 0.0214 (11) 0.0072 (10)
C5 0.0531 (14) 0.0361 (11) 0.0492 (13) 0.0061 (10) 0.0229 (11) −0.0011 (9)
C6 0.0455 (13) 0.0295 (10) 0.0412 (12) 0.0022 (9) 0.0133 (10) −0.0016 (9)
C7 0.0402 (13) 0.0395 (12) 0.0517 (13) −0.0018 (9) 0.0139 (11) −0.0117 (10)
C8 0.0483 (14) 0.0382 (12) 0.0580 (15) 0.0040 (10) 0.0030 (11) 0.0069 (10)
C9 0.0518 (14) 0.0434 (12) 0.0515 (14) −0.0031 (10) 0.0131 (11) 0.0118 (10)
C10 0.0424 (12) 0.0352 (11) 0.0411 (12) −0.0016 (9) 0.0091 (10) −0.0016 (9)
C11 0.0465 (13) 0.0404 (12) 0.0400 (12) 0.0039 (10) 0.0087 (10) 0.0094 (9)
C12 0.0554 (15) 0.0414 (12) 0.0440 (13) −0.0032 (10) 0.0176 (11) −0.0010 (9)
C13 0.0451 (14) 0.0488 (13) 0.0572 (15) 0.0010 (10) 0.0151 (11) −0.0043 (11)
C14 0.070 (2) 0.0732 (19) 0.126 (3) −0.0153 (15) 0.0536 (19) 0.0001 (18)
C15 0.0468 (16) 0.105 (2) 0.077 (2) 0.0111 (15) 0.0061 (15) −0.0186 (16)
C16 0.0638 (17) 0.0669 (16) 0.0687 (17) 0.0053 (13) 0.0278 (14) −0.0127 (13)

Geometric parameters (Å, º)

Cl1—C4 1.741 (3) C2—H2 0.9300
S1—C1 1.757 (2) C3—H3 0.9300
S1—C7 1.875 (2) C5—H5 0.9300
N1—C6 1.369 (3) C8—H8A 0.9700
N1—C7 1.456 (3) C8—H8B 0.9700
N1—H1N 0.844 (18) C9—H9A 0.9700
C1—C2 1.371 (3) C9—H9B 0.9700
C1—C6 1.393 (3) C10—H10 0.9800
C2—C3 1.384 (4) C11—H11A 0.9700
C3—C4 1.375 (3) C11—H11B 0.9700
C4—C5 1.375 (3) C12—H12A 0.9700
C5—C6 1.381 (3) C12—H12B 0.9700
C7—C12 1.519 (3) C14—H14A 0.9600
C7—C8 1.519 (3) C14—H14B 0.9600
C8—C9 1.515 (3) C14—H14C 0.9600
C9—C10 1.528 (3) C15—H15A 0.9600
C10—C13 1.548 (3) C15—H15B 0.9600
C10—C11 1.534 (3) C15—H15C 0.9600
C11—C12 1.521 (3) C16—H16A 0.9600
C13—C15 1.531 (3) C16—H16B 0.9600
C13—C16 1.533 (3) C16—H16C 0.9600
C13—C14 1.529 (4)
C1—S1—C7 92.59 (10) C7—C8—H8A 109.00
C6—N1—C7 118.31 (19) C7—C8—H8B 109.00
C6—N1—H1N 122.4 (18) C9—C8—H8A 109.00
C7—N1—H1N 119.2 (18) C9—C8—H8B 109.00
C2—C1—C6 120.3 (2) H8A—C8—H8B 108.00
S1—C1—C6 111.63 (16) C8—C9—H9A 109.00
S1—C1—C2 128.03 (16) C8—C9—H9B 109.00
C1—C2—C3 120.35 (19) C10—C9—H9A 109.00
C2—C3—C4 118.6 (2) C10—C9—H9B 109.00
Cl1—C4—C3 119.39 (19) H9A—C9—H9B 108.00
Cl1—C4—C5 118.43 (17) C9—C10—H10 107.00
C3—C4—C5 122.2 (2) C11—C10—H10 107.00
C4—C5—C6 118.9 (2) C13—C10—H10 107.00
C1—C6—C5 119.7 (2) C10—C11—H11A 109.00
N1—C6—C1 114.0 (2) C10—C11—H11B 109.00
N1—C6—C5 126.29 (19) C12—C11—H11A 109.00
S1—C7—N1 103.38 (15) C12—C11—H11B 109.00
N1—C7—C8 111.46 (17) H11A—C11—H11B 108.00
S1—C7—C8 110.32 (15) C7—C12—H12A 109.00
S1—C7—C12 109.96 (13) C7—C12—H12B 109.00
C8—C7—C12 109.82 (19) C11—C12—H12A 109.00
N1—C7—C12 111.75 (19) C11—C12—H12B 109.00
C7—C8—C9 113.43 (16) H12A—C12—H12B 108.00
C8—C9—C10 111.89 (18) C13—C14—H14A 110.00
C9—C10—C11 107.78 (18) C13—C14—H14B 109.00
C9—C10—C13 115.16 (18) C13—C14—H14C 109.00
C11—C10—C13 113.56 (16) H14A—C14—H14B 109.00
C10—C11—C12 112.56 (16) H14A—C14—H14C 109.00
C7—C12—C11 112.28 (18) H14B—C14—H14C 109.00
C10—C13—C15 109.36 (19) C13—C15—H15A 110.00
C10—C13—C16 112.15 (19) C13—C15—H15B 109.00
C14—C13—C16 108.1 (2) C13—C15—H15C 110.00
C15—C13—C16 108.70 (18) H15A—C15—H15B 110.00
C14—C13—C15 108.4 (2) H15A—C15—H15C 109.00
C10—C13—C14 110.04 (18) H15B—C15—H15C 109.00
C1—C2—H2 120.00 C13—C16—H16A 110.00
C3—C2—H2 120.00 C13—C16—H16B 109.00
C2—C3—H3 121.00 C13—C16—H16C 109.00
C4—C3—H3 121.00 H16A—C16—H16B 109.00
C4—C5—H5 121.00 H16A—C16—H16C 109.00
C6—C5—H5 121.00 H16B—C16—H16C 110.00
C7—S1—C1—C2 180.00 (19) C4—C5—C6—N1 178.9 (2)
C7—S1—C1—C6 −0.14 (15) C4—C5—C6—C1 −0.5 (3)
C1—S1—C7—N1 −1.11 (14) S1—C7—C8—C9 −68.5 (2)
C1—S1—C7—C8 −120.40 (16) N1—C7—C8—C9 177.21 (19)
C1—S1—C7—C12 118.33 (16) C12—C7—C8—C9 52.8 (2)
C6—N1—C7—S1 2.3 (2) S1—C7—C12—C11 69.25 (19)
C6—N1—C7—C8 120.8 (2) N1—C7—C12—C11 −176.55 (16)
C6—N1—C7—C12 −115.9 (2) C8—C7—C12—C11 −52.3 (2)
C7—N1—C6—C1 −2.6 (3) C7—C8—C9—C10 −56.6 (2)
C7—N1—C6—C5 178.01 (19) C8—C9—C10—C11 56.2 (2)
S1—C1—C2—C3 179.60 (16) C8—C9—C10—C13 −175.93 (15)
C6—C1—C2—C3 −0.3 (3) C9—C10—C11—C12 −56.7 (2)
S1—C1—C6—N1 1.5 (2) C13—C10—C11—C12 174.45 (17)
S1—C1—C6—C5 −179.09 (15) C9—C10—C13—C14 46.7 (2)
C2—C1—C6—N1 −178.61 (18) C9—C10—C13—C15 165.71 (17)
C2—C1—C6—C5 0.8 (3) C9—C10—C13—C16 −73.6 (2)
C1—C2—C3—C4 −0.6 (3) C11—C10—C13—C14 171.7 (2)
C2—C3—C4—C5 0.9 (3) C11—C10—C13—C15 −69.4 (2)
C2—C3—C4—Cl1 −178.66 (16) C11—C10—C13—C16 51.3 (2)
Cl1—C4—C5—C6 179.20 (15) C10—C11—C12—C7 56.6 (2)
C3—C4—C5—C6 −0.4 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
C8—H8B···Cg1i 0.97 2.84 3.796 (2) 169

Symmetry code: (i) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2411).

References

  1. Akkurt, M., Karaca, S., Ermut, G., Karalı, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o399–o400. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Aryai, V. P., Nair, M. G., Wasaiwalla, Y. H. & Shenoy, S. J. (1976). Indian J. Chem. Sect. B, 14, 984–987.
  4. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Coudert, P., Couquelet, J., Sudre, O. & Bastide, J. (1988). J. Pharm. Belg. 43, 258–262. [PubMed]
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S. & Salman, A. (2010). Eur. J. Med. Chem. 45, 1068–1077. [DOI] [PubMed]
  11. Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017539/su2411sup1.cif

e-68-o1542-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017539/su2411Isup2.hkl

e-68-o1542-Isup2.hkl (188.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017539/su2411Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES