Abstract
In the title compound, C11H10ClN3O, the quinoline ring system is essentially planar, the r.m.s. deviation for the non-H atoms being 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—N=NH2 group. In the crystal, molecules are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming zigzag layers parallel to (010).
Related literature
For previous work on molecules with a quinolyl moiety, see: Benzerka et al. (2011 ▶); Belfaitah et al. (2006 ▶) Bouraiou et al. (2008 ▶, 2011 ▶); Ladraa et al. (2009 ▶). For applications of pyrazole and its derivatives, see: Mali et al. (2010 ▶); Paul et al. (2001 ▶).
Experimental
Crystal data
C11H10ClN3O
M r = 235.67
Orthorhombic,
a = 3.8949 (2) Å
b = 12.0510 (5) Å
c = 21.9910 (9) Å
V = 1032.20 (8) Å3
Z = 4
Mo Kα radiation
μ = 0.35 mm−1
T = 150 K
0.28 × 0.15 × 0.14 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002 ▶) T min = 0.898, T max = 0.952
15777 measured reflections
2352 independent reflections
2044 reflections with I > 2σ(I)
R int = 0.044
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.073
S = 1.06
2352 reflections
147 parameters
H-atom parameters constrained
Δρmax = 0.31 e Å−3
Δρmin = −0.26 e Å−3
Absolute structure: Flack (1983 ▶), 922 Friedel pairs
Flack parameter: 0.00 (6)
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: SAINT (Bruker, 2004 ▶); data reduction: SAINT (Bruker, 2004 ▶); program(s) used to solve structure: SIR2002 (Burla et al., 2003 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and DIAMOND (Brandenburg & Berndt, 2001 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017977/fj2545sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017977/fj2545Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812017977/fj2545Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N13—H13A⋯O14i | 0.88 | 2.34 | 3.219 (2) | 178 |
| N13—H13B⋯N13ii | 0.88 | 2.19 | 3.058 (2) | 169 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
We are grateful to the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria for assistance. Thanks are also due to the Ministére de l’Enseignement Supérieur et de la Recherche Scientifique and the Agence Nationale pour le Développement de la Recherche Universitaire for financial support via the PNR programm.
supplementary crystallographic information
Comment
Pyrazole and its derivatives are gaining importance in medicinal and organic chemistry. They have displayed broad spectrum of pharmacological and biological activities such as anti-bacterial, anti-depressant, and anti-hyperglycemic (Mali et al., 2010). Pyrazolo[3,4-b]quinolines have displayed bioactivities such as antiviral, antimalarial, lowering of serum cholesterol (Paul et al., 2001), but no metal complexes of such drugs have been reported in the past which might possibly have better pharmaceutical effect. Therefore, studies of the metal complexes are important in the search for new drugs. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Belfaitah et al., 2006; Bouraiou et al., 2008, 2011; Ladraa et al., 2009 and Benzerka et al., 2011). In this paper, we report the structure determination of compound resulting from an unwanted reaction of the 6-methoxy-1H-pyrazolo[3,4-b]quinoline with RuCl3 in acidic conditions. Our attempt to synthesis the pyrazolo[3,4-b]quinoline/Ruthenium complex was failed and led to (E)-1-((2-chloro-6-methylquinolin-3-yl)methylene)hydrazine (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymetric unit of title molecule, (C11 H10 Cl N3 O), the chloro-quinolyl unit is linked to methoxy and methylenehydrazine group. The quinoline ring system is essentially planar; the r.m.s. deviation for the non-H atoms is 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—N═NH2 group. The crystal packing can be described as layers in zigzag parallel to the (010) plane (Fig. 2). It is stabilized by N—H···O and N—H···N intermolecular hydrogen bonds (Fig. 2). These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure. Hydrogen-bonding parameters are listed in table 1.
Experimental
First, 6-methoxy-1H-pyrazolo[3,4-b]quinoline was prepared from 2-chloro-6-methoxyquinoline-3-carbaldehyde and hydrazine hydrate in refluxing ethanol in a one-pot synthesis. Next, a mixture of 6-methoxy-1H-pyrazolo[3,4-b]quinoline(5 mmol)and RuCl3(5 mmol) in aqueous HCl(10 ml) was stirred at 50°C for 1 h. Under these conditions, compound I was successfully obtained. Single crystals suitable for X-ray diffraction analysis were obtained by dissolving the corresponding compound in methanol solution and letting it for slow evaporation at room temperature.
Refinement
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.95 and 0.98 Å, N—H = 0.88 Å and Uiso(H) =1.5 or 1.2(carrier atom)).
Figures
Fig. 1.
(Farrugia, 1997) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
Fig. 2.
(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [N—H···O and N—H···N] as dashed line.
Crystal data
| C11H10ClN3O | Dx = 1.517 Mg m−3 |
| Mr = 235.67 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, P212121 | Cell parameters from 26476 reflections |
| a = 3.8949 (2) Å | θ = 2.9–27.5° |
| b = 12.0510 (5) Å | µ = 0.35 mm−1 |
| c = 21.9910 (9) Å | T = 150 K |
| V = 1032.20 (8) Å3 | Prism, colourless |
| Z = 4 | 0.28 × 0.15 × 0.14 mm |
| F(000) = 488 |
Data collection
| Bruker APEXII diffractometer | 2352 independent reflections |
| Radiation source: Enraf–Nonius FR590 | 2044 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.044 |
| Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
| CCD rotation images, thin slices scans | h = −5→5 |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | k = −15→15 |
| Tmin = 0.898, Tmax = 0.952 | l = −28→28 |
| 15777 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
| wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2196P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max = 0.001 |
| 2352 reflections | Δρmax = 0.31 e Å−3 |
| 147 parameters | Δρmin = −0.26 e Å−3 |
| 0 restraints | Absolute structure: Flack (1983), 922 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.00 (6) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.4493 (5) | 0.15128 (15) | 0.87535 (8) | 0.0170 (4) | |
| C3 | 0.3425 (5) | 0.16948 (14) | 0.77399 (8) | 0.0168 (4) | |
| C4 | 0.3615 (5) | 0.23375 (14) | 0.72037 (8) | 0.0187 (4) | |
| H4 | 0.4634 | 0.3053 | 0.7216 | 0.022* | |
| C5 | 0.2342 (5) | 0.19378 (14) | 0.66667 (8) | 0.0201 (4) | |
| H5 | 0.2468 | 0.2378 | 0.6309 | 0.024* | |
| C6 | 0.0840 (5) | 0.08694 (15) | 0.66430 (8) | 0.0179 (4) | |
| C7 | 0.0598 (5) | 0.02243 (15) | 0.71528 (8) | 0.0173 (4) | |
| H7 | −0.0414 | −0.0492 | 0.7131 | 0.021* | |
| C8 | 0.1864 (5) | 0.06299 (13) | 0.77136 (8) | 0.0160 (4) | |
| C9 | 0.1641 (5) | 0.00226 (13) | 0.82624 (8) | 0.0156 (4) | |
| H9 | 0.0595 | −0.069 | 0.8261 | 0.019* | |
| C10 | 0.2916 (5) | 0.04468 (14) | 0.87986 (8) | 0.0165 (4) | |
| C11 | 0.2622 (5) | −0.01392 (14) | 0.93795 (8) | 0.0179 (4) | |
| H11 | 0.3884 | 0.0114 | 0.9722 | 0.021* | |
| C15 | −0.1868 (5) | −0.05136 (14) | 0.60289 (8) | 0.0219 (4) | |
| H15A | −0.0198 | −0.1085 | 0.6143 | 0.033* | |
| H15B | −0.2623 | −0.0637 | 0.5609 | 0.033* | |
| H15C | −0.3852 | −0.0552 | 0.6302 | 0.033* | |
| N2 | 0.4745 (4) | 0.21203 (13) | 0.82682 (6) | 0.0176 (3) | |
| N12 | 0.0681 (4) | −0.09888 (12) | 0.94285 (7) | 0.0202 (3) | |
| N13 | 0.0692 (5) | −0.15224 (13) | 0.99808 (7) | 0.0240 (4) | |
| H13A | 0.1995 | −0.1275 | 1.0278 | 0.029* | |
| H13B | −0.0603 | −0.2112 | 1.0037 | 0.029* | |
| Cl1 | 0.62727 (12) | 0.20978 (3) | 0.941458 (19) | 0.02055 (12) | |
| O14 | −0.0299 (4) | 0.05616 (10) | 0.60762 (5) | 0.0210 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0146 (10) | 0.0199 (9) | 0.0167 (8) | 0.0006 (7) | 0.0013 (8) | −0.0050 (7) |
| C3 | 0.0146 (9) | 0.0175 (8) | 0.0183 (8) | 0.0019 (8) | 0.0024 (8) | −0.0024 (7) |
| C4 | 0.0198 (9) | 0.0143 (8) | 0.0219 (8) | 0.0004 (8) | 0.0038 (8) | 0.0006 (7) |
| C5 | 0.0244 (10) | 0.0191 (9) | 0.0170 (9) | 0.0024 (8) | 0.0041 (8) | 0.0025 (7) |
| C6 | 0.0179 (10) | 0.0207 (9) | 0.0151 (8) | 0.0033 (8) | 0.0011 (8) | −0.0031 (7) |
| C7 | 0.0193 (10) | 0.0138 (8) | 0.0189 (9) | −0.0001 (7) | 0.0025 (8) | −0.0011 (7) |
| C8 | 0.0149 (10) | 0.0155 (8) | 0.0176 (8) | 0.0032 (7) | 0.0025 (8) | −0.0012 (7) |
| C9 | 0.0158 (10) | 0.0121 (8) | 0.0188 (8) | −0.0007 (8) | 0.0031 (8) | 0.0000 (7) |
| C10 | 0.0149 (10) | 0.0163 (9) | 0.0184 (9) | 0.0027 (7) | 0.0024 (7) | −0.0020 (7) |
| C11 | 0.0190 (9) | 0.0191 (9) | 0.0156 (8) | 0.0017 (7) | −0.0014 (8) | −0.0031 (8) |
| C15 | 0.0242 (11) | 0.0227 (9) | 0.0187 (9) | −0.0015 (8) | −0.0010 (9) | −0.0039 (7) |
| N2 | 0.0173 (7) | 0.0173 (7) | 0.0181 (7) | −0.0005 (7) | 0.0025 (6) | −0.0021 (7) |
| N12 | 0.0224 (8) | 0.0201 (7) | 0.0181 (7) | 0.0014 (6) | 0.0024 (8) | 0.0018 (7) |
| N13 | 0.0339 (10) | 0.0203 (8) | 0.0177 (7) | −0.0039 (8) | −0.0013 (8) | 0.0034 (6) |
| Cl1 | 0.0223 (2) | 0.0211 (2) | 0.01815 (19) | −0.00307 (19) | −0.0007 (2) | −0.00380 (18) |
| O14 | 0.0302 (8) | 0.0194 (7) | 0.0135 (6) | −0.0021 (5) | −0.0012 (6) | −0.0008 (5) |
Geometric parameters (Å, º)
| C1—N2 | 1.298 (2) | C8—C9 | 1.414 (2) |
| C1—C10 | 1.428 (2) | C9—C10 | 1.378 (2) |
| C1—Cl1 | 1.7581 (17) | C9—H9 | 0.95 |
| C3—N2 | 1.370 (2) | C10—C11 | 1.464 (2) |
| C3—C4 | 1.413 (2) | C11—N12 | 1.277 (2) |
| C3—C8 | 1.421 (2) | C11—H11 | 0.95 |
| C4—C5 | 1.368 (3) | C15—O14 | 1.436 (2) |
| C4—H4 | 0.95 | C15—H15A | 0.98 |
| C5—C6 | 1.415 (3) | C15—H15B | 0.98 |
| C5—H5 | 0.95 | C15—H15C | 0.98 |
| C6—C7 | 1.368 (2) | N12—N13 | 1.374 (2) |
| C6—O14 | 1.374 (2) | N13—H13A | 0.88 |
| C7—C8 | 1.415 (2) | N13—H13B | 0.88 |
| C7—H7 | 0.95 | ||
| N2—C1—C10 | 126.68 (16) | C10—C9—C8 | 121.08 (15) |
| N2—C1—Cl1 | 115.08 (13) | C10—C9—H9 | 119.5 |
| C10—C1—Cl1 | 118.23 (13) | C8—C9—H9 | 119.5 |
| N2—C3—C4 | 118.87 (16) | C9—C10—C1 | 115.43 (15) |
| N2—C3—C8 | 122.21 (15) | C9—C10—C11 | 122.66 (15) |
| C4—C3—C8 | 118.92 (16) | C1—C10—C11 | 121.89 (15) |
| C5—C4—C3 | 120.56 (16) | N12—C11—C10 | 120.43 (17) |
| C5—C4—H4 | 119.7 | N12—C11—H11 | 119.8 |
| C3—C4—H4 | 119.7 | C10—C11—H11 | 119.8 |
| C4—C5—C6 | 120.12 (16) | O14—C15—H15A | 109.5 |
| C4—C5—H5 | 119.9 | O14—C15—H15B | 109.5 |
| C6—C5—H5 | 119.9 | H15A—C15—H15B | 109.5 |
| C7—C6—O14 | 124.60 (16) | O14—C15—H15C | 109.5 |
| C7—C6—C5 | 121.03 (16) | H15A—C15—H15C | 109.5 |
| O14—C6—C5 | 114.37 (15) | H15B—C15—H15C | 109.5 |
| C6—C7—C8 | 119.60 (16) | C1—N2—C3 | 117.24 (15) |
| C6—C7—H7 | 120.2 | C11—N12—N13 | 116.60 (16) |
| C8—C7—H7 | 120.2 | N12—N13—H13A | 120 |
| C9—C8—C7 | 122.92 (16) | N12—N13—H13B | 120 |
| C9—C8—C3 | 117.32 (16) | H13A—N13—H13B | 120 |
| C7—C8—C3 | 119.76 (16) | C6—O14—C15 | 116.53 (14) |
| N2—C3—C4—C5 | 179.61 (17) | C8—C9—C10—C1 | −1.1 (3) |
| C8—C3—C4—C5 | −0.5 (3) | C8—C9—C10—C11 | 177.74 (17) |
| C3—C4—C5—C6 | −0.4 (3) | N2—C1—C10—C9 | 2.1 (3) |
| C4—C5—C6—C7 | 0.7 (3) | Cl1—C1—C10—C9 | −178.57 (14) |
| C4—C5—C6—O14 | −179.26 (17) | N2—C1—C10—C11 | −176.71 (17) |
| O14—C6—C7—C8 | 179.99 (18) | Cl1—C1—C10—C11 | 2.6 (2) |
| C5—C6—C7—C8 | 0.1 (3) | C9—C10—C11—N12 | −11.3 (3) |
| C6—C7—C8—C9 | 178.61 (17) | C1—C10—C11—N12 | 167.39 (17) |
| C6—C7—C8—C3 | −1.0 (3) | C10—C1—N2—C3 | −1.3 (3) |
| N2—C3—C8—C9 | 1.4 (3) | Cl1—C1—N2—C3 | 179.38 (13) |
| C4—C3—C8—C9 | −178.41 (18) | C4—C3—N2—C1 | 179.25 (17) |
| N2—C3—C8—C7 | −178.88 (17) | C8—C3—N2—C1 | −0.6 (3) |
| C4—C3—C8—C7 | 1.3 (3) | C10—C11—N12—N13 | 176.74 (15) |
| C7—C8—C9—C10 | 179.82 (18) | C7—C6—O14—C15 | 0.5 (3) |
| C3—C8—C9—C10 | −0.5 (3) | C5—C6—O14—C15 | −179.58 (15) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N13—H13A···O14i | 0.88 | 2.34 | 3.219 (2) | 178 |
| N13—H13B···N13ii | 0.88 | 2.19 | 3.058 (2) | 169 |
| C11—H11···Cl1 | 0.95 | 2.65 | 3.0488 (18) | 106 |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) x−1/2, −y−1/2, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2545).
References
- Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.
- Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085. [DOI] [PMC free article] [PubMed]
- Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.
- Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.
- Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
- Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. [DOI] [PubMed]
- Mali, J. R., Pratap, U. R., Jawale, D. V. & Mane, R. A. (2010). Tetrahedron Lett. 51, 3980–3982.
- Paul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827–3829.
- Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017977/fj2545sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017977/fj2545Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812017977/fj2545Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


