Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 28;68(Pt 5):o1548. doi: 10.1107/S1600536812017977

2-Chloro-3-[(E)-(hydrazin-1-yl­idene)meth­yl]-6-meth­oxy­quinoline

Sofiane Bouacida a,*, Abdelmalek Bouraiou b, Nassima Benhamoud a, Thierry Roisnel c, Ali Belfaitah b
PMCID: PMC3344647  PMID: 22590409

Abstract

In the title compound, C11H10ClN3O, the quinoline ring system is essentially planar, the r.m.s. deviation for the non-H atoms being 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—N=NH2 group. In the crystal, molecules are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming zigzag layers parallel to (010).

Related literature  

For previous work on mol­ecules with a quinolyl moiety, see: Benzerka et al. (2011); Belfaitah et al. (2006) Bouraiou et al. (2008, 2011); Ladraa et al. (2009). For applications of pyrazole and its derivatives, see: Mali et al. (2010); Paul et al. (2001).graphic file with name e-68-o1548-scheme1.jpg

Experimental  

Crystal data  

  • C11H10ClN3O

  • M r = 235.67

  • Orthorhombic, Inline graphic

  • a = 3.8949 (2) Å

  • b = 12.0510 (5) Å

  • c = 21.9910 (9) Å

  • V = 1032.20 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 150 K

  • 0.28 × 0.15 × 0.14 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.898, T max = 0.952

  • 15777 measured reflections

  • 2352 independent reflections

  • 2044 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.073

  • S = 1.06

  • 2352 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 922 Friedel pairs

  • Flack parameter: 0.00 (6)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017977/fj2545sup1.cif

e-68-o1548-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017977/fj2545Isup2.hkl

e-68-o1548-Isup2.hkl (113.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017977/fj2545Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13A⋯O14i 0.88 2.34 3.219 (2) 178
N13—H13B⋯N13ii 0.88 2.19 3.058 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria for assistance. Thanks are also due to the Ministére de l’Enseignement Supérieur et de la Recherche Scientifique and the Agence Nationale pour le Développement de la Recherche Universitaire for financial support via the PNR programm.

supplementary crystallographic information

Comment

Pyrazole and its derivatives are gaining importance in medicinal and organic chemistry. They have displayed broad spectrum of pharmacological and biological activities such as anti-bacterial, anti-depressant, and anti-hyperglycemic (Mali et al., 2010). Pyrazolo[3,4-b]quinolines have displayed bioactivities such as antiviral, antimalarial, lowering of serum cholesterol (Paul et al., 2001), but no metal complexes of such drugs have been reported in the past which might possibly have better pharmaceutical effect. Therefore, studies of the metal complexes are important in the search for new drugs. In previous works, we were interested in the design and synthesis of new molecules that contain a quinolyl moiety (Belfaitah et al., 2006; Bouraiou et al., 2008, 2011; Ladraa et al., 2009 and Benzerka et al., 2011). In this paper, we report the structure determination of compound resulting from an unwanted reaction of the 6-methoxy-1H-pyrazolo[3,4-b]quinoline with RuCl3 in acidic conditions. Our attempt to synthesis the pyrazolo[3,4-b]quinoline/Ruthenium complex was failed and led to (E)-1-((2-chloro-6-methylquinolin-3-yl)methylene)hydrazine (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. In the asymetric unit of title molecule, (C11 H10 Cl N3 O), the chloro-quinolyl unit is linked to methoxy and methylenehydrazine group. The quinoline ring system is essentially planar; the r.m.s. deviation for the non-H atoms is 0.014 (2) Å with a maximum deviation from the mean plane of 0.0206 (14) Å for the C atom bonded to the –CH—N═NH2 group. The crystal packing can be described as layers in zigzag parallel to the (010) plane (Fig. 2). It is stabilized by N—H···O and N—H···N intermolecular hydrogen bonds (Fig. 2). These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure. Hydrogen-bonding parameters are listed in table 1.

Experimental

First, 6-methoxy-1H-pyrazolo[3,4-b]quinoline was prepared from 2-chloro-6-methoxyquinoline-3-carbaldehyde and hydrazine hydrate in refluxing ethanol in a one-pot synthesis. Next, a mixture of 6-methoxy-1H-pyrazolo[3,4-b]quinoline(5 mmol)and RuCl3(5 mmol) in aqueous HCl(10 ml) was stirred at 50°C for 1 h. Under these conditions, compound I was successfully obtained. Single crystals suitable for X-ray diffraction analysis were obtained by dissolving the corresponding compound in methanol solution and letting it for slow evaporation at room temperature.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or N atom. (with C—H = 0.95 and 0.98 Å, N—H = 0.88 Å and Uiso(H) =1.5 or 1.2(carrier atom)).

Figures

Fig. 1.

Fig. 1.

(Farrugia, 1997) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

(Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the a axis and showing hydrogen bond [N—H···O and N—H···N] as dashed line.

Crystal data

C11H10ClN3O Dx = 1.517 Mg m3
Mr = 235.67 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 26476 reflections
a = 3.8949 (2) Å θ = 2.9–27.5°
b = 12.0510 (5) Å µ = 0.35 mm1
c = 21.9910 (9) Å T = 150 K
V = 1032.20 (8) Å3 Prism, colourless
Z = 4 0.28 × 0.15 × 0.14 mm
F(000) = 488

Data collection

Bruker APEXII diffractometer 2352 independent reflections
Radiation source: Enraf–Nonius FR590 2044 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 3.3°
CCD rotation images, thin slices scans h = −5→5
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) k = −15→15
Tmin = 0.898, Tmax = 0.952 l = −28→28
15777 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2196P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2352 reflections Δρmax = 0.31 e Å3
147 parameters Δρmin = −0.26 e Å3
0 restraints Absolute structure: Flack (1983), 922 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4493 (5) 0.15128 (15) 0.87535 (8) 0.0170 (4)
C3 0.3425 (5) 0.16948 (14) 0.77399 (8) 0.0168 (4)
C4 0.3615 (5) 0.23375 (14) 0.72037 (8) 0.0187 (4)
H4 0.4634 0.3053 0.7216 0.022*
C5 0.2342 (5) 0.19378 (14) 0.66667 (8) 0.0201 (4)
H5 0.2468 0.2378 0.6309 0.024*
C6 0.0840 (5) 0.08694 (15) 0.66430 (8) 0.0179 (4)
C7 0.0598 (5) 0.02243 (15) 0.71528 (8) 0.0173 (4)
H7 −0.0414 −0.0492 0.7131 0.021*
C8 0.1864 (5) 0.06299 (13) 0.77136 (8) 0.0160 (4)
C9 0.1641 (5) 0.00226 (13) 0.82624 (8) 0.0156 (4)
H9 0.0595 −0.069 0.8261 0.019*
C10 0.2916 (5) 0.04468 (14) 0.87986 (8) 0.0165 (4)
C11 0.2622 (5) −0.01392 (14) 0.93795 (8) 0.0179 (4)
H11 0.3884 0.0114 0.9722 0.021*
C15 −0.1868 (5) −0.05136 (14) 0.60289 (8) 0.0219 (4)
H15A −0.0198 −0.1085 0.6143 0.033*
H15B −0.2623 −0.0637 0.5609 0.033*
H15C −0.3852 −0.0552 0.6302 0.033*
N2 0.4745 (4) 0.21203 (13) 0.82682 (6) 0.0176 (3)
N12 0.0681 (4) −0.09888 (12) 0.94285 (7) 0.0202 (3)
N13 0.0692 (5) −0.15224 (13) 0.99808 (7) 0.0240 (4)
H13A 0.1995 −0.1275 1.0278 0.029*
H13B −0.0603 −0.2112 1.0037 0.029*
Cl1 0.62727 (12) 0.20978 (3) 0.941458 (19) 0.02055 (12)
O14 −0.0299 (4) 0.05616 (10) 0.60762 (5) 0.0210 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0146 (10) 0.0199 (9) 0.0167 (8) 0.0006 (7) 0.0013 (8) −0.0050 (7)
C3 0.0146 (9) 0.0175 (8) 0.0183 (8) 0.0019 (8) 0.0024 (8) −0.0024 (7)
C4 0.0198 (9) 0.0143 (8) 0.0219 (8) 0.0004 (8) 0.0038 (8) 0.0006 (7)
C5 0.0244 (10) 0.0191 (9) 0.0170 (9) 0.0024 (8) 0.0041 (8) 0.0025 (7)
C6 0.0179 (10) 0.0207 (9) 0.0151 (8) 0.0033 (8) 0.0011 (8) −0.0031 (7)
C7 0.0193 (10) 0.0138 (8) 0.0189 (9) −0.0001 (7) 0.0025 (8) −0.0011 (7)
C8 0.0149 (10) 0.0155 (8) 0.0176 (8) 0.0032 (7) 0.0025 (8) −0.0012 (7)
C9 0.0158 (10) 0.0121 (8) 0.0188 (8) −0.0007 (8) 0.0031 (8) 0.0000 (7)
C10 0.0149 (10) 0.0163 (9) 0.0184 (9) 0.0027 (7) 0.0024 (7) −0.0020 (7)
C11 0.0190 (9) 0.0191 (9) 0.0156 (8) 0.0017 (7) −0.0014 (8) −0.0031 (8)
C15 0.0242 (11) 0.0227 (9) 0.0187 (9) −0.0015 (8) −0.0010 (9) −0.0039 (7)
N2 0.0173 (7) 0.0173 (7) 0.0181 (7) −0.0005 (7) 0.0025 (6) −0.0021 (7)
N12 0.0224 (8) 0.0201 (7) 0.0181 (7) 0.0014 (6) 0.0024 (8) 0.0018 (7)
N13 0.0339 (10) 0.0203 (8) 0.0177 (7) −0.0039 (8) −0.0013 (8) 0.0034 (6)
Cl1 0.0223 (2) 0.0211 (2) 0.01815 (19) −0.00307 (19) −0.0007 (2) −0.00380 (18)
O14 0.0302 (8) 0.0194 (7) 0.0135 (6) −0.0021 (5) −0.0012 (6) −0.0008 (5)

Geometric parameters (Å, º)

C1—N2 1.298 (2) C8—C9 1.414 (2)
C1—C10 1.428 (2) C9—C10 1.378 (2)
C1—Cl1 1.7581 (17) C9—H9 0.95
C3—N2 1.370 (2) C10—C11 1.464 (2)
C3—C4 1.413 (2) C11—N12 1.277 (2)
C3—C8 1.421 (2) C11—H11 0.95
C4—C5 1.368 (3) C15—O14 1.436 (2)
C4—H4 0.95 C15—H15A 0.98
C5—C6 1.415 (3) C15—H15B 0.98
C5—H5 0.95 C15—H15C 0.98
C6—C7 1.368 (2) N12—N13 1.374 (2)
C6—O14 1.374 (2) N13—H13A 0.88
C7—C8 1.415 (2) N13—H13B 0.88
C7—H7 0.95
N2—C1—C10 126.68 (16) C10—C9—C8 121.08 (15)
N2—C1—Cl1 115.08 (13) C10—C9—H9 119.5
C10—C1—Cl1 118.23 (13) C8—C9—H9 119.5
N2—C3—C4 118.87 (16) C9—C10—C1 115.43 (15)
N2—C3—C8 122.21 (15) C9—C10—C11 122.66 (15)
C4—C3—C8 118.92 (16) C1—C10—C11 121.89 (15)
C5—C4—C3 120.56 (16) N12—C11—C10 120.43 (17)
C5—C4—H4 119.7 N12—C11—H11 119.8
C3—C4—H4 119.7 C10—C11—H11 119.8
C4—C5—C6 120.12 (16) O14—C15—H15A 109.5
C4—C5—H5 119.9 O14—C15—H15B 109.5
C6—C5—H5 119.9 H15A—C15—H15B 109.5
C7—C6—O14 124.60 (16) O14—C15—H15C 109.5
C7—C6—C5 121.03 (16) H15A—C15—H15C 109.5
O14—C6—C5 114.37 (15) H15B—C15—H15C 109.5
C6—C7—C8 119.60 (16) C1—N2—C3 117.24 (15)
C6—C7—H7 120.2 C11—N12—N13 116.60 (16)
C8—C7—H7 120.2 N12—N13—H13A 120
C9—C8—C7 122.92 (16) N12—N13—H13B 120
C9—C8—C3 117.32 (16) H13A—N13—H13B 120
C7—C8—C3 119.76 (16) C6—O14—C15 116.53 (14)
N2—C3—C4—C5 179.61 (17) C8—C9—C10—C1 −1.1 (3)
C8—C3—C4—C5 −0.5 (3) C8—C9—C10—C11 177.74 (17)
C3—C4—C5—C6 −0.4 (3) N2—C1—C10—C9 2.1 (3)
C4—C5—C6—C7 0.7 (3) Cl1—C1—C10—C9 −178.57 (14)
C4—C5—C6—O14 −179.26 (17) N2—C1—C10—C11 −176.71 (17)
O14—C6—C7—C8 179.99 (18) Cl1—C1—C10—C11 2.6 (2)
C5—C6—C7—C8 0.1 (3) C9—C10—C11—N12 −11.3 (3)
C6—C7—C8—C9 178.61 (17) C1—C10—C11—N12 167.39 (17)
C6—C7—C8—C3 −1.0 (3) C10—C1—N2—C3 −1.3 (3)
N2—C3—C8—C9 1.4 (3) Cl1—C1—N2—C3 179.38 (13)
C4—C3—C8—C9 −178.41 (18) C4—C3—N2—C1 179.25 (17)
N2—C3—C8—C7 −178.88 (17) C8—C3—N2—C1 −0.6 (3)
C4—C3—C8—C7 1.3 (3) C10—C11—N12—N13 176.74 (15)
C7—C8—C9—C10 179.82 (18) C7—C6—O14—C15 0.5 (3)
C3—C8—C9—C10 −0.5 (3) C5—C6—O14—C15 −179.58 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N13—H13A···O14i 0.88 2.34 3.219 (2) 178
N13—H13B···N13ii 0.88 2.19 3.058 (2) 169
C11—H11···Cl1 0.95 2.65 3.0488 (18) 106

Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) x−1/2, −y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2545).

References

  1. Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.
  2. Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085. [DOI] [PMC free article] [PubMed]
  3. Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.
  4. Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.
  5. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  6. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  10. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  11. Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. [DOI] [PubMed]
  12. Mali, J. R., Pratap, U. R., Jawale, D. V. & Mane, R. A. (2010). Tetrahedron Lett. 51, 3980–3982.
  13. Paul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827–3829.
  14. Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017977/fj2545sup1.cif

e-68-o1548-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017977/fj2545Isup2.hkl

e-68-o1548-Isup2.hkl (113.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017977/fj2545Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES