Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 28;68(Pt 5):o1554. doi: 10.1107/S1600536812017849

Diethyl [(2-bromo­anilino)(1,3-diphenyl-1H-pyrazol-4-yl)meth­yl]phospho­nate

G Suresh a, V Sabari a, A Nandakumar b, P T Perumal b, S Aravindhan a,*
PMCID: PMC3344653  PMID: 22590415

Abstract

In the title compound, C26H27BrN3O3P, the central pyrazole ring forms a dihedral angle of 71.7 (2)° with the bromo­phenyl ring. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with R 2 2(10) ring motifs. Four C atoms of the 3-phenyl ring are disordered over two sets of sites [site occupancies = 0.745 (6) and 0.225 (6)].

Related literature  

For information on pyrazole derivatives, see: Sullivan et al. (2006); Patel et al. (2010). For a related structure, see: Saeed et al. (2009).graphic file with name e-68-o1554-scheme1.jpg

Experimental  

Crystal data  

  • C26H27BrN3O3P

  • M r = 540.39

  • Monoclinic, Inline graphic

  • a = 11.2553 (6) Å

  • b = 23.9104 (15) Å

  • c = 9.4741 (5) Å

  • β = 91.229 (3)°

  • V = 2549.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.953, T max = 0.964

  • 35555 measured reflections

  • 4502 independent reflections

  • 3093 reflections with I > 2σ(I)

  • R int = 0.065

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.129

  • S = 1.09

  • 4502 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812017849/bt5876sup1.cif

e-68-o1554-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017849/bt5876Isup2.hkl

e-68-o1554-Isup2.hkl (216.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017849/bt5876Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.48 3.305 (4) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

SA thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Pyrazoles exhibit a variety of pharmacological properties for e.g antibacterial and anti-inflammatory activities (Sullivan et al., 2006; Patel et al., 2010). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths N2—C13 and N3—C14 are normal and comparable to the corresponding values observed in the related structure of 3-(3-Chloroanilino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)propan-1-one (Saeed et al., 2009). The central pyrazole ring and the bromophenyl ring are almost perpendicular with the dihedral angle of 71.7 (2) °, whereas the two phenyl rings are twisted from the pyrazole ring as can be seen from the dihedral angle of 15.0 (1)° and 39.3 (3)°, respectively. The pyrazole ring system is essentially planar, with maximum deviation of 0.006 (4) for atom C14. The sum of bond angles around N2[359.7 (3) °] of the pyrazole ring is in accordance with sp3 hybridization. The atoms Br1 and N1 are deviated by -0.039 (1) Å and 0.019 (3) Å from the leastsquares plane of the benzene(C1—C6) ring. The four carbon atoms in the phenyl ring are disordered over two sets of sites [site occupancies = 0.745 (6) and 0.225 (6)].

The phosphinite group assumes an extended conformation as can be seen from torsion angles P1—O2—C8—C9 of -179.0 (5)°. A pair of N1—H1···O1 hydrogen bonds at x,y,z and -x,1 - y,2 - z form a cyclic centrosymmetric dimer [R22(10)]. These hdrogen bonds are crosslinked to Br1 to form S(5) ring (C1—C6—N1—H1—Br1) motif. The crystal packing is stabilized N—H···O hydrogen bonds.

Experimental

A mixture of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (1 mmol), 2-bromoaniline (1 mmol), diethyl phosphite (1.5 mmol), and pottasium hydrogen sulfate (20 mol-%) under neat condition was stirred at room temperature. After completion of the reaction as indicated by TLC, it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed.

Refinement

The four carbon atoms in one of the phenyl ring are disordered over two positions (C22/C22', C23/C23',C25/C25'and C26/C26') with refined occupancies of 0.745 (6) and 0.225 (6). The corresponding bond distances involving the disordered atoms were restrained to be equal. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 10% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Partial crystal packing diagram of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C26H27BrN3O3P F(000) = 1112
Mr = 540.39 Dx = 1.408 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4502 reflections
a = 11.2553 (6) Å θ = 1.8–25.0°
b = 23.9104 (15) Å µ = 1.71 mm1
c = 9.4741 (5) Å T = 293 K
β = 91.229 (3)° Block, colourless
V = 2549.1 (2) Å3 0.25 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 4502 independent reflections
Radiation source: fine-focus sealed tube 3093 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.065
ω and φ scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −13→13
Tmin = 0.953, Tmax = 0.964 k = −28→27
35555 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0498P)2 + 2.1289P] where P = (Fo2 + 2Fc2)/3
4502 reflections (Δ/σ)max = 0.001
346 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7034 (4) 0.66776 (16) −0.0245 (4) 0.0574 (10)
C2 0.7722 (4) 0.7133 (2) 0.0147 (5) 0.0779 (13)
H2 0.8481 0.7177 −0.0207 0.093*
C3 0.7276 (5) 0.7521 (2) 0.1063 (5) 0.0865 (15)
H3 0.7733 0.7829 0.1329 0.104*
C4 0.6169 (5) 0.74563 (19) 0.1580 (5) 0.0781 (13)
H4 0.5867 0.7723 0.2191 0.094*
C5 0.5490 (4) 0.69993 (18) 0.1209 (4) 0.0673 (11)
H5 0.4742 0.6958 0.1593 0.081*
C6 0.5898 (3) 0.65948 (15) 0.0268 (4) 0.0511 (9)
C7 0.3974 (3) 0.60774 (16) 0.0142 (4) 0.0505 (9)
H7 0.3663 0.6453 0.0315 0.061*
C8 0.4361 (6) 0.5769 (3) 0.4318 (5) 0.120 (2)
H8A 0.3557 0.5708 0.4634 0.143*
H8B 0.4762 0.5410 0.4315 0.143*
C9 0.4960 (6) 0.6131 (3) 0.5283 (6) 0.143 (3)
H9A 0.5745 0.6206 0.4955 0.214*
H9B 0.5012 0.5956 0.6195 0.214*
H9C 0.4527 0.6476 0.5353 0.214*
C10 0.1356 (5) 0.5406 (2) 0.1624 (7) 0.1005 (18)
H10A 0.1640 0.5114 0.1007 0.121*
H10B 0.1072 0.5230 0.2476 0.121*
C11 0.0402 (5) 0.5692 (3) 0.0941 (8) 0.136 (3)
H11A 0.0227 0.6027 0.1455 0.204*
H11B −0.0287 0.5455 0.0909 0.204*
H11C 0.0620 0.5788 −0.0002 0.204*
C12 0.3294 (3) 0.58391 (16) −0.1095 (4) 0.0468 (8)
C13 0.3284 (3) 0.52928 (17) −0.1523 (4) 0.0530 (9)
H13 0.3733 0.5004 −0.1127 0.064*
C14 0.2477 (3) 0.61084 (16) −0.2020 (4) 0.0482 (9)
C15 0.2134 (3) 0.47520 (16) −0.3328 (4) 0.0490 (9)
C16 0.2418 (4) 0.42335 (18) −0.2799 (5) 0.0724 (13)
H16 0.2901 0.4204 −0.1994 0.087*
C17 0.1996 (5) 0.37591 (19) −0.3447 (5) 0.0813 (14)
H17 0.2201 0.3410 −0.3082 0.098*
C18 0.1276 (4) 0.3795 (2) −0.4627 (5) 0.0758 (13)
H18 0.0960 0.3474 −0.5042 0.091*
C19 0.1031 (4) 0.4311 (2) −0.5184 (5) 0.0775 (14)
H19 0.0564 0.4337 −0.6004 0.093*
C20 0.1461 (4) 0.47938 (19) −0.4557 (4) 0.0695 (12)
H20 0.1300 0.5141 −0.4958 0.083*
C24 0.1410 (7) 0.7813 (3) −0.2076 (8) 0.115 (2)
H24 0.1173 0.8185 −0.2103 0.138*
C21 0.2108 (3) 0.67015 (16) −0.2048 (4) 0.0568 (10)
C22 0.2954 (5) 0.7121 (2) −0.1798 (6) 0.0693 (17) 0.745 (6)
H22 0.3746 0.7027 −0.1627 0.083* 0.745 (6)
C23 0.2609 (7) 0.7677 (3) −0.1808 (8) 0.092 (2) 0.745 (6)
H23 0.3165 0.7958 −0.1639 0.110* 0.745 (6)
C25 0.0615 (8) 0.7409 (4) −0.2291 (12) 0.114 (3) 0.745 (6)
H25 −0.0179 0.7502 −0.2445 0.137* 0.745 (6)
C26 0.0949 (6) 0.6850 (3) −0.2290 (8) 0.082 (2) 0.745 (6)
H26 0.0380 0.6574 −0.2455 0.098* 0.745 (6)
C22' 0.178 (2) 0.6952 (8) −0.3278 (19) 0.083 (7) 0.255 (6)
H22' 0.1787 0.6743 −0.4106 0.100* 0.255 (6)
C23' 0.143 (3) 0.7510 (10) −0.335 (2) 0.104 (9) 0.255 (6)
H23' 0.1223 0.7676 −0.4205 0.125* 0.255 (6)
C25' 0.144 (2) 0.7541 (9) −0.083 (2) 0.093 (7) 0.255 (6)
H25' 0.1212 0.7723 −0.0014 0.111* 0.255 (6)
C26' 0.1800 (15) 0.6992 (7) −0.0784 (16) 0.067 (5) 0.255 (6)
H26' 0.1846 0.6808 0.0080 0.080* 0.255 (6)
N1 0.5235 (3) 0.61313 (13) −0.0113 (3) 0.0555 (8)
H1 0.5589 0.5860 −0.0525 0.067*
N2 0.2510 (2) 0.52470 (13) −0.2618 (3) 0.0488 (7)
N3 0.1990 (3) 0.57471 (13) −0.2936 (3) 0.0514 (7)
O1 0.3995 (3) 0.50661 (12) 0.1577 (3) 0.0676 (8)
O2 0.4314 (3) 0.59874 (12) 0.2902 (3) 0.0672 (8)
O3 0.2326 (2) 0.57768 (13) 0.1987 (3) 0.0731 (8)
P1 0.36718 (9) 0.56534 (5) 0.16934 (10) 0.0536 (3)
Br1 0.76574 (4) 0.61592 (2) −0.15402 (5) 0.0757 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.068 (2) 0.048 (2) 0.056 (2) −0.013 (2) −0.0117 (19) 0.0093 (18)
C2 0.083 (3) 0.068 (3) 0.082 (3) −0.033 (3) −0.004 (2) 0.005 (3)
C3 0.116 (4) 0.062 (3) 0.081 (3) −0.038 (3) −0.007 (3) −0.004 (3)
C4 0.107 (4) 0.051 (3) 0.075 (3) −0.011 (3) −0.005 (3) −0.014 (2)
C5 0.078 (3) 0.057 (3) 0.066 (3) −0.008 (2) −0.007 (2) −0.010 (2)
C6 0.063 (2) 0.041 (2) 0.049 (2) −0.0047 (18) −0.0167 (17) 0.0025 (17)
C7 0.048 (2) 0.051 (2) 0.051 (2) −0.0002 (17) −0.0102 (16) −0.0067 (17)
C8 0.167 (6) 0.137 (6) 0.053 (3) −0.051 (5) −0.024 (3) 0.012 (3)
C9 0.139 (6) 0.229 (9) 0.060 (3) −0.058 (5) −0.014 (3) −0.022 (4)
C10 0.078 (3) 0.093 (4) 0.130 (5) −0.024 (3) −0.012 (3) 0.019 (3)
C11 0.062 (3) 0.153 (7) 0.193 (7) −0.007 (4) −0.022 (4) −0.021 (5)
C12 0.0424 (19) 0.051 (2) 0.0463 (19) −0.0025 (17) −0.0058 (15) −0.0005 (17)
C13 0.051 (2) 0.056 (3) 0.051 (2) 0.0059 (18) −0.0178 (17) −0.0033 (18)
C14 0.0476 (19) 0.052 (2) 0.0448 (19) −0.0049 (17) −0.0047 (15) 0.0027 (17)
C15 0.047 (2) 0.056 (2) 0.044 (2) 0.0036 (17) −0.0028 (16) −0.0077 (17)
C16 0.097 (3) 0.056 (3) 0.062 (3) 0.000 (2) −0.031 (2) 0.002 (2)
C17 0.109 (4) 0.052 (3) 0.082 (3) 0.001 (2) −0.026 (3) −0.002 (2)
C18 0.082 (3) 0.063 (3) 0.082 (3) 0.000 (2) −0.008 (2) −0.027 (2)
C19 0.091 (3) 0.071 (3) 0.069 (3) 0.014 (3) −0.031 (2) −0.025 (2)
C20 0.086 (3) 0.058 (3) 0.063 (3) 0.014 (2) −0.029 (2) −0.012 (2)
C24 0.136 (6) 0.055 (4) 0.152 (7) 0.018 (4) −0.006 (5) 0.009 (4)
C21 0.062 (2) 0.047 (2) 0.060 (2) −0.0024 (19) −0.0069 (19) 0.0054 (19)
C22 0.069 (4) 0.058 (4) 0.081 (4) −0.009 (3) 0.003 (3) 0.009 (3)
C23 0.102 (6) 0.050 (4) 0.123 (6) −0.015 (4) 0.008 (5) 0.003 (4)
C25 0.091 (5) 0.071 (6) 0.178 (10) 0.019 (5) −0.029 (6) 0.019 (5)
C26 0.069 (4) 0.056 (4) 0.118 (6) 0.000 (3) −0.019 (4) 0.008 (4)
C22' 0.127 (18) 0.060 (12) 0.062 (11) 0.047 (12) −0.016 (11) −0.005 (9)
C23' 0.16 (2) 0.079 (15) 0.069 (13) 0.057 (16) 0.003 (14) 0.018 (12)
C25' 0.130 (19) 0.080 (14) 0.068 (12) 0.049 (13) 0.008 (12) −0.011 (11)
C26' 0.084 (12) 0.072 (12) 0.045 (9) 0.018 (9) −0.012 (8) 0.004 (8)
N1 0.0503 (17) 0.0497 (19) 0.066 (2) −0.0076 (15) −0.0058 (14) −0.0149 (16)
N2 0.0516 (17) 0.0470 (19) 0.0474 (17) 0.0032 (14) −0.0117 (13) −0.0028 (14)
N3 0.0570 (18) 0.0499 (19) 0.0467 (16) 0.0017 (15) −0.0124 (14) 0.0023 (15)
O1 0.0795 (19) 0.0542 (18) 0.0686 (17) 0.0002 (14) −0.0087 (14) 0.0044 (14)
O2 0.0795 (19) 0.0733 (19) 0.0479 (15) −0.0120 (15) −0.0163 (13) −0.0021 (13)
O3 0.0599 (17) 0.080 (2) 0.0793 (19) −0.0114 (15) −0.0013 (14) −0.0111 (16)
P1 0.0526 (5) 0.0572 (7) 0.0506 (6) −0.0040 (5) −0.0092 (4) −0.0032 (5)
Br1 0.0700 (3) 0.0664 (3) 0.0911 (4) −0.0081 (2) 0.0090 (2) −0.0043 (2)

Geometric parameters (Å, º)

C1—C2 1.383 (6) C15—C20 1.379 (5)
C1—C6 1.392 (5) C15—N2 1.422 (5)
C1—Br1 1.890 (4) C16—C17 1.370 (6)
C2—C3 1.372 (7) C16—H16 0.9300
C2—H2 0.9300 C17—C18 1.369 (6)
C3—C4 1.358 (7) C17—H17 0.9300
C3—H3 0.9300 C18—C19 1.368 (6)
C4—C5 1.374 (6) C18—H18 0.9300
C4—H4 0.9300 C19—C20 1.382 (6)
C5—C6 1.400 (6) C19—H19 0.9300
C5—H5 0.9300 C20—H20 0.9300
C6—N1 1.380 (4) C24—C25 1.330 (10)
C7—N1 1.451 (5) C24—C25' 1.34 (2)
C7—C12 1.498 (5) C24—C23 1.406 (9)
C7—P1 1.824 (4) C24—C23' 1.41 (2)
C7—H7 0.9800 C24—H24 0.9300
C8—C9 1.419 (8) C21—C22' 1.355 (17)
C8—O2 1.439 (5) C21—C26 1.366 (7)
C8—H8A 0.9700 C21—C22 1.400 (7)
C8—H8B 0.9700 C21—C26' 1.434 (16)
C9—H9A 0.9600 C22—C23 1.384 (9)
C9—H9B 0.9600 C22—H22 0.9300
C9—H9C 0.9600 C23—H23 0.9300
C10—C11 1.417 (8) C25—C26 1.388 (10)
C10—O3 1.442 (5) C25—H25 0.9300
C10—H10A 0.9700 C26—H26 0.9300
C10—H10B 0.9700 C22'—C23' 1.39 (3)
C11—H11A 0.9600 C22'—H22' 0.9300
C11—H11B 0.9600 C23'—H23' 0.9300
C11—H11C 0.9600 C25'—C26' 1.38 (2)
C12—C13 1.368 (5) C25'—H25' 0.9300
C12—C14 1.412 (5) C26'—H26' 0.9300
C13—N2 1.344 (4) N1—H1 0.8600
C13—H13 0.9300 N2—N3 1.362 (4)
C14—N3 1.334 (4) O1—P1 1.455 (3)
C14—C21 1.478 (5) O2—P1 1.561 (3)
C15—C16 1.373 (6) O3—P1 1.574 (3)
C2—C1—C6 122.1 (4) C19—C18—H18 120.6
C2—C1—Br1 118.5 (4) C17—C18—H18 120.6
C6—C1—Br1 119.3 (3) C18—C19—C20 121.5 (4)
C3—C2—C1 119.5 (5) C18—C19—H19 119.3
C3—C2—H2 120.3 C20—C19—H19 119.3
C1—C2—H2 120.3 C15—C20—C19 118.9 (4)
C4—C3—C2 120.1 (4) C15—C20—H20 120.5
C4—C3—H3 119.9 C19—C20—H20 120.5
C2—C3—H3 119.9 C25—C24—C25' 77.6 (12)
C3—C4—C5 120.5 (5) C25—C24—C23 120.0 (6)
C3—C4—H4 119.7 C25'—C24—C23 74.1 (11)
C5—C4—H4 119.7 C25—C24—C23' 61.2 (12)
C4—C5—C6 121.6 (4) C25'—C24—C23' 120.1 (13)
C4—C5—H5 119.2 C23—C24—C23' 90.0 (12)
C6—C5—H5 119.2 C25—C24—H24 120.0
N1—C6—C1 121.2 (4) C25'—C24—H24 119.2
N1—C6—C5 122.6 (4) C23—C24—H24 120.0
C1—C6—C5 116.1 (4) C23'—C24—H24 118.7
N1—C7—C12 112.8 (3) C22'—C21—C26 60.0 (10)
N1—C7—P1 112.6 (2) C22'—C21—C22 90.0 (11)
C12—C7—P1 108.5 (2) C26—C21—C22 119.1 (5)
N1—C7—H7 107.5 C22'—C21—C26' 116.0 (10)
C12—C7—H7 107.5 C26—C21—C26' 76.5 (7)
P1—C7—H7 107.5 C22—C21—C26' 71.8 (8)
C9—C8—O2 112.7 (5) C22'—C21—C14 120.7 (8)
C9—C8—H8A 109.0 C26—C21—C14 121.2 (4)
O2—C8—H8A 109.0 C22—C21—C14 119.7 (4)
C9—C8—H8B 109.0 C26'—C21—C14 121.6 (7)
O2—C8—H8B 109.0 C23—C22—C21 119.8 (6)
H8A—C8—H8B 107.8 C23—C22—H22 120.1
C8—C9—H9A 109.5 C21—C22—H22 120.1
C8—C9—H9B 109.5 C22—C23—C24 119.4 (6)
H9A—C9—H9B 109.5 C22—C23—H23 120.3
C8—C9—H9C 109.5 C24—C23—H23 120.3
H9A—C9—H9C 109.5 C24—C25—C26 121.2 (7)
H9B—C9—H9C 109.5 C24—C25—H25 119.4
C11—C10—O3 112.0 (5) C26—C25—H25 119.4
C11—C10—H10A 109.2 C21—C26—C25 120.5 (6)
O3—C10—H10A 109.2 C21—C26—H26 119.8
C11—C10—H10B 109.2 C25—C26—H26 119.8
O3—C10—H10B 109.2 C21—C22'—C23' 122.4 (16)
H10A—C10—H10B 107.9 C21—C22'—H22' 118.8
C10—C11—H11A 109.5 C23'—C22'—H22' 118.8
C10—C11—H11B 109.5 C22'—C23'—C24 117.6 (16)
H11A—C11—H11B 109.5 C22'—C23'—H23' 121.2
C10—C11—H11C 109.5 C24—C23'—H23' 121.2
H11A—C11—H11C 109.5 C24—C25'—C26' 119.5 (15)
H11B—C11—H11C 109.5 C24—C25'—H25' 120.2
C13—C12—C14 104.5 (3) C26'—C25'—H25' 120.2
C13—C12—C7 126.6 (3) C25'—C26'—C21 120.7 (14)
C14—C12—C7 128.8 (3) C25'—C26'—H26' 119.6
N2—C13—C12 107.9 (3) C21—C26'—H26' 119.6
N2—C13—H13 126.0 C6—N1—C7 123.6 (3)
C12—C13—H13 126.0 C6—N1—H1 118.2
N3—C14—C12 111.2 (3) C7—N1—H1 118.2
N3—C14—C21 119.9 (3) C13—N2—N3 111.6 (3)
C12—C14—C21 128.9 (3) C13—N2—C15 127.9 (3)
C16—C15—C20 119.6 (4) N3—N2—C15 120.2 (3)
C16—C15—N2 120.9 (3) C14—N3—N2 104.8 (3)
C20—C15—N2 119.5 (3) C8—O2—P1 120.3 (3)
C17—C16—C15 120.6 (4) C10—O3—P1 124.7 (3)
C17—C16—H16 119.7 O1—P1—O2 115.90 (17)
C15—C16—H16 119.7 O1—P1—O3 115.93 (18)
C18—C17—C16 120.5 (4) O2—P1—O3 101.93 (16)
C18—C17—H17 119.7 O1—P1—C7 115.09 (17)
C16—C17—H17 119.7 O2—P1—C7 102.44 (16)
C19—C18—C17 118.8 (4) O3—P1—C7 103.59 (17)
C6—C1—C2—C3 −0.5 (7) C22—C21—C26—C25 0.1 (11)
Br1—C1—C2—C3 178.6 (4) C26'—C21—C26—C25 60.1 (11)
C1—C2—C3—C4 0.1 (8) C14—C21—C26—C25 179.0 (7)
C2—C3—C4—C5 0.9 (8) C24—C25—C26—C21 0.8 (15)
C3—C4—C5—C6 −1.5 (7) C26—C21—C22'—C23' 70 (2)
C2—C1—C6—N1 −178.6 (4) C22—C21—C22'—C23' −55 (2)
Br1—C1—C6—N1 2.3 (5) C26'—C21—C22'—C23' 15 (3)
C2—C1—C6—C5 −0.2 (6) C14—C21—C22'—C23' −180 (2)
Br1—C1—C6—C5 −179.2 (3) C21—C22'—C23'—C24 −1 (4)
C4—C5—C6—N1 179.6 (4) C25—C24—C23'—C22' −69 (2)
C4—C5—C6—C1 1.2 (6) C25'—C24—C23'—C22' −16 (3)
N1—C7—C12—C13 74.8 (5) C23—C24—C23'—C22' 56 (3)
P1—C7—C12—C13 −50.7 (5) C25—C24—C25'—C26' 63 (2)
N1—C7—C12—C14 −109.5 (4) C23—C24—C25'—C26' −63.4 (19)
P1—C7—C12—C14 125.0 (4) C23'—C24—C25'—C26' 17 (3)
C14—C12—C13—N2 −0.3 (4) C24—C25'—C26'—C21 −2 (3)
C7—C12—C13—N2 176.3 (3) C22'—C21—C26'—C25' −14 (2)
C13—C12—C14—N3 0.9 (4) C26—C21—C26'—C25' −60.1 (17)
C7—C12—C14—N3 −175.6 (3) C22—C21—C26'—C25' 67.1 (17)
C13—C12—C14—C21 179.0 (4) C14—C21—C26'—C25' −178.8 (15)
C7—C12—C14—C21 2.5 (6) C1—C6—N1—C7 −166.8 (3)
C20—C15—C16—C17 −2.9 (7) C5—C6—N1—C7 14.8 (5)
N2—C15—C16—C17 176.3 (4) C12—C7—N1—C6 136.8 (3)
C15—C16—C17—C18 −0.5 (8) P1—C7—N1—C6 −99.9 (4)
C16—C17—C18—C19 3.0 (8) C12—C13—N2—N3 −0.4 (4)
C17—C18—C19—C20 −2.1 (8) C12—C13—N2—C15 −174.3 (3)
C16—C15—C20—C19 3.7 (7) C16—C15—N2—C13 9.9 (6)
N2—C15—C20—C19 −175.5 (4) C20—C15—N2—C13 −170.8 (4)
C18—C19—C20—C15 −1.2 (7) C16—C15—N2—N3 −163.5 (4)
N3—C14—C21—C22' −32.5 (14) C20—C15—N2—N3 15.7 (5)
C12—C14—C21—C22' 149.6 (13) C12—C14—N3—N2 −1.1 (4)
N3—C14—C21—C26 38.8 (7) C21—C14—N3—N2 −179.4 (3)
C12—C14—C21—C26 −139.2 (5) C13—N2—N3—C14 1.0 (4)
N3—C14—C21—C22 −142.3 (4) C15—N2—N3—C14 175.4 (3)
C12—C14—C21—C22 39.7 (6) C9—C8—O2—P1 −179.0 (5)
N3—C14—C21—C26' 131.9 (9) C11—C10—O3—P1 −132.9 (5)
C12—C14—C21—C26' −46.1 (10) C8—O2—P1—O1 −49.5 (5)
C22'—C21—C22—C23 54.7 (10) C8—O2—P1—O3 77.4 (4)
C26—C21—C22—C23 −0.4 (9) C8—O2—P1—C7 −175.6 (4)
C26'—C21—C22—C23 −62.7 (9) C10—O3—P1—O1 −24.8 (4)
C14—C21—C22—C23 −179.3 (5) C10—O3—P1—O2 −151.6 (4)
C21—C22—C23—C24 −0.3 (10) C10—O3—P1—C7 102.2 (4)
C25—C24—C23—C22 1.3 (13) N1—C7—P1—O1 −66.3 (3)
C25'—C24—C23—C22 66.3 (11) C12—C7—P1—O1 59.4 (3)
C23'—C24—C23—C22 −55.0 (13) N1—C7—P1—O2 60.4 (3)
C25'—C24—C25—C26 −64.8 (13) C12—C7—P1—O2 −173.9 (2)
C23—C24—C25—C26 −1.5 (16) N1—C7—P1—O3 166.2 (2)
C23'—C24—C25—C26 70.1 (13) C12—C7—P1—O3 −68.2 (3)
C22'—C21—C26—C25 −71.2 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.48 3.305 (4) 162

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5876).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.
  4. Saeed, A., Hussain, S. & Bolte, M. (2009). Acta Cryst. E65, o1231. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Sullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43–53. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812017849/bt5876sup1.cif

e-68-o1554-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017849/bt5876Isup2.hkl

e-68-o1554-Isup2.hkl (216.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017849/bt5876Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES