Abstract
In the title compound, C14H15NO3, the conformation of the double bond was determined to be E, confirming the result obtained from two-dimensional NMR data. The five-membered rings of the pyrrolizine unit exhibit C-envelope conformations, with C atoms displaced from the mean planes formed by the remaining rings atoms by 0.1468 (15) and 0.5405 (17) Å. The mean planes of these rings (through all ring atoms) have a dihedral angle of 49.03 (10)°. In the crystal, molecules are linked by O—H⋯O hydrogen bonds. The absolute configuration of the molecule was established, as judged by the, as judged by the obtained values for the Hooft and Flack parameters.
Related literature
For the preparation of the title compound, see: Freire et al. (2011 ▶). For the use of this type of compound as LFA-1 (Lymphocyte Function-Associated Antigen-1) inhibitors, see: Baumann (2007 ▶). For related structures, see: Oliveira et al. (2012a
▶,b
▶).
Experimental
Crystal data
C14H15NO3
M r = 245.27
Orthorhombic,
a = 6.5007 (3) Å
b = 13.6783 (7) Å
c = 13.8382 (7) Å
V = 1230.47 (11) Å3
Z = 4
Cu Kα radiation
μ = 0.77 mm−1
T = 100 K
0.31 × 0.13 × 0.13 mm
Data collection
Bruker Kappa APEXII DUO diffractometer
Absorption correction: numerical (SADABS; Bruker, 2010 ▶) T min = 0.924, T max = 1.000
32528 measured reflections
2219 independent reflections
2203 reflections with I > 2σ(I)
R int = 0.034
Refinement
Data collection: APEX2 (Bruker, 2010) ▶; cell refinement: SAINT (Bruker, 2010 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018223/pv2526sup1.cif
Supplementary material file. DOI: 10.1107/S1600536812018223/pv2526Isup2.cml
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018223/pv2526Isup3.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯O3i | 0.84 | 2.04 | 2.776 (2) | 147 |
| O3—H3⋯O2ii | 0.84 | 1.85 | 2.6810 (17) | 168 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. FLO and KRLF were supported by bursaries from CAPES and CNPq, respectively. KRLF is currently a FAPESP post-doctoral fellow. RA and FC are recipients of research grants from CNPq.
supplementary crystallographic information
Comment
The title compound (Fig. 1) is a new asymmetric benzyl-pyrrolizidinone which has been synthesized from a chiral Morita-Baylis-Hillman adduct. It belongs to a class of compounds with potential pharmacological properties as mediators of the LFA-1 (lymphocyte function-associated antigen 1) function, particularly as anti-inflammatory agents and for the treatment of autoimmune diseases (Baumann, 2007). It has three defined stereocenters and a double bond with E configuration. The five membered rings N1/C3/C2/C1/C7A and N1/C5/C6/C7/C7A of the pyrrolizine moiety exhibit C2- and C5-envelope conformations, respectively, with C2 and C5 atoms displaced from the mean-planes formed by the remaining rings atoms by 0.1468 (15) and 0.5405 (17) Å, respectively. The mean planes of these rings have a dihedral angle of 49.03 (10)°. The configuration of the double bond determined by X-ray crystallography confirms the two-dimensional-NOESY NMR analysis. The crystal structure is stabilized by intermolecular hydrogen bonds (Tab. 1 and Fig. 2).
Experimental
The title compound was prepared using a synthetic sequence previously described (Freire et al., 2011) and purified by flash silica gel column chromatography (CH2Cl2:MeOH – solvent gradient: 100:0 to 95:05) to afford 0.14 g (as a white solid) in 76% yield, followed by recrystallization using the liquid-vapor saturation method. Subsequently, it was dissolved in ethanol and crystallized under the vapor pressure of ethyl ether (a less polar liquid), in a closed camera, thus allowing for the slow formation of good diffracting crystals.
Refinement
The calculated Flack parameter was F = 0.1 (3) (Flack, 1983). Further analysis OF the absolute structure was performed with PLATON (Spek, 2009), using likelihood methods (Hooft et al., 2008). The calculated value for the Hooft parameter was y = 0.01 (2), with a corresponding probability of 1x10-100 for an inverted structure. These results unequivocally indicate that the absolute structure has been correctly assigned. All H atoms were placed in calculated positions with O—H = 0.84 Å and C—H = 0.95, 0.99 and 1.00 Å for aryl, methylene and methyne H-atoms, respectively, and refined in the riding model approximation with Uiso(H) = 1.5 Ueq(O) or 1.2 Ueq(C).
Figures
Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
Fig. 2.
A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
Crystal data
| C14H15NO3 | Dx = 1.324 Mg m−3 |
| Mr = 245.27 | Cu Kα radiation, λ = 1.54178 Å |
| Orthorhombic, P212121 | Cell parameters from 2219 reflections |
| a = 6.5007 (3) Å | θ = 4.6–68.1° |
| b = 13.6783 (7) Å | µ = 0.77 mm−1 |
| c = 13.8382 (7) Å | T = 100 K |
| V = 1230.47 (11) Å3 | Rectangular, colourless |
| Z = 4 | 0.31 × 0.13 × 0.13 mm |
| F(000) = 520 |
Data collection
| Bruker Kappa APEXII DUO diffractometer | 2219 independent reflections |
| Radiation source: fine-focus sealed tube | 2203 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.034 |
| Bruker APEX CCD area–detector scans | θmax = 68.1°, θmin = 4.6° |
| Absorption correction: numerical (SADABS; Bruker, 2010) | h = −7→5 |
| Tmin = 0.924, Tmax = 1.000 | k = −16→16 |
| 32528 measured reflections | l = −16→16 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
| wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2433P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.06 | (Δ/σ)max < 0.001 |
| 2219 reflections | Δρmax = 0.27 e Å−3 |
| 165 parameters | Δρmin = −0.23 e Å−3 |
| 0 restraints | Absolute structure: Flack (1983) and Hooft et al. (2008); Hooft parameter = 0.01(2), 905 Bijvoet pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.1 (3) |
Special details
| Experimental. [α]D20 + 40 (c 1, MeOH); IR (Film, νmax): 3427, 3195, 2940, 2855, 1668, 1634, 1493, 1424, 1268, 1156, 1067 cm-1; 1H NMR (400 MHz, CD3CN) δ 1.30 (m, J = 13.8, 9.1, 5.4 Hz, 1H, H-14 A), 2.38 (m, J = 13.8, 6.8 Hz, 1H, H-14B), 3.27 (dd, J = 12.3, 6.1 Hz, 1H, H-2 A), 3.56 (dd, J = 12.3, 3.3 Hz, 1H, H-2B), 3.69 (ddd, J = 9.1, 7.4, 1.8 Hz, 1H, H-10), 4.47 (qd, J = 6.1, 3.3 Hz, 1H, H-1 A), 4.91 (dd, J = 1.8 Hz, 1H, H-11), 7.35 (d, J = 2.1 Hz, 1H, H-5), 7.41 (m, 3H, Ph), 7.79 (m, 2H, Ph); 13C NMR (62.5 MHz, (CD3)2CO) δ 38.1, 52.1, 68.2, 70.1, 72.0, 129.2, 130.3, 131.3, 134.1, 134.2, 137.1, 172.1; HRMS (ESI-TOF) Calcd. for C14H16NO3 [M + H]+ 246.1130. Found 246.1168. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.2407 (3) | 0.95636 (13) | 0.17238 (19) | 0.1020 (7) | |
| H1 | 0.1725 | 1.0026 | 0.1962 | 0.153* | |
| O2 | 0.52812 (19) | 0.71064 (10) | 0.18954 (10) | 0.0546 (3) | |
| O3 | −0.14247 (18) | 0.65007 (11) | 0.28956 (12) | 0.0615 (4) | |
| H3 | −0.2555 | 0.6653 | 0.2643 | 0.092* | |
| N1 | 0.2098 (2) | 0.75095 (9) | 0.13314 (9) | 0.0364 (3) | |
| C6 | 0.1266 (3) | 0.91174 (13) | 0.09912 (14) | 0.0478 (4) | |
| H1A | 0.0930 | 0.9587 | 0.0460 | 0.057* | |
| C5 | 0.2537 (3) | 0.82646 (13) | 0.06255 (12) | 0.0465 (4) | |
| H2A | 0.2099 | 0.8063 | −0.0030 | 0.056* | |
| H2B | 0.4021 | 0.8428 | 0.0614 | 0.056* | |
| C3 | 0.3405 (2) | 0.71615 (11) | 0.20026 (12) | 0.0364 (3) | |
| C2 | 0.2186 (2) | 0.68831 (11) | 0.28681 (11) | 0.0336 (3) | |
| C4 | 0.3095 (2) | 0.64180 (11) | 0.36077 (11) | 0.0381 (3) | |
| H5 | 0.4483 | 0.6237 | 0.3490 | 0.046* | |
| C8 | 0.2326 (3) | 0.61406 (11) | 0.45626 (11) | 0.0389 (4) | |
| C13 | 0.3573 (3) | 0.55253 (13) | 0.51150 (13) | 0.0498 (4) | |
| H7 | 0.4864 | 0.5321 | 0.4864 | 0.060* | |
| C12 | 0.2964 (4) | 0.52072 (15) | 0.60216 (14) | 0.0635 (6) | |
| H8 | 0.3822 | 0.4779 | 0.6382 | 0.076* | |
| C11 | 0.1114 (4) | 0.55125 (15) | 0.63990 (13) | 0.0631 (6) | |
| H9 | 0.0687 | 0.5294 | 0.7019 | 0.076* | |
| C7A | −0.0026 (2) | 0.75856 (12) | 0.16618 (11) | 0.0378 (3) | |
| H10 | −0.0881 | 0.7114 | 0.1283 | 0.045* | |
| C1 | 0.0020 (2) | 0.72470 (11) | 0.27237 (11) | 0.0364 (3) | |
| H11 | −0.0253 | 0.7814 | 0.3162 | 0.044* | |
| C10 | −0.0113 (4) | 0.61354 (15) | 0.58734 (13) | 0.0603 (5) | |
| H12 | −0.1380 | 0.6353 | 0.6140 | 0.072* | |
| C9 | 0.0468 (3) | 0.64509 (14) | 0.49607 (13) | 0.0498 (4) | |
| H13 | −0.0401 | 0.6879 | 0.4607 | 0.060* | |
| C7 | −0.0656 (3) | 0.86200 (15) | 0.13809 (16) | 0.0584 (5) | |
| H14A | −0.1744 | 0.8603 | 0.0880 | 0.070* | |
| H14B | −0.1189 | 0.8977 | 0.1951 | 0.070* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0789 (13) | 0.0675 (10) | 0.159 (2) | 0.0143 (9) | −0.0431 (13) | −0.0432 (12) |
| O2 | 0.0280 (6) | 0.0762 (9) | 0.0597 (7) | 0.0084 (6) | 0.0039 (5) | 0.0184 (7) |
| O3 | 0.0281 (6) | 0.0713 (9) | 0.0852 (10) | −0.0097 (6) | −0.0096 (6) | 0.0430 (8) |
| N1 | 0.0322 (6) | 0.0392 (6) | 0.0379 (6) | 0.0041 (5) | −0.0002 (5) | 0.0048 (5) |
| C6 | 0.0442 (9) | 0.0423 (8) | 0.0570 (10) | 0.0035 (7) | −0.0013 (8) | 0.0138 (8) |
| C5 | 0.0410 (10) | 0.0574 (10) | 0.0411 (8) | 0.0042 (7) | 0.0057 (7) | 0.0141 (7) |
| C3 | 0.0278 (8) | 0.0392 (8) | 0.0421 (8) | 0.0037 (6) | −0.0011 (6) | 0.0029 (6) |
| C2 | 0.0292 (7) | 0.0355 (7) | 0.0361 (7) | −0.0007 (6) | −0.0034 (6) | 0.0018 (6) |
| C4 | 0.0309 (7) | 0.0418 (8) | 0.0418 (8) | −0.0003 (6) | −0.0042 (6) | 0.0033 (7) |
| C8 | 0.0451 (9) | 0.0348 (7) | 0.0367 (8) | −0.0039 (7) | −0.0068 (7) | −0.0012 (6) |
| C13 | 0.0540 (11) | 0.0485 (10) | 0.0469 (9) | 0.0012 (8) | −0.0085 (8) | 0.0047 (8) |
| C12 | 0.0888 (16) | 0.0570 (11) | 0.0448 (10) | −0.0003 (11) | −0.0128 (11) | 0.0131 (9) |
| C11 | 0.0951 (16) | 0.0564 (11) | 0.0377 (9) | −0.0114 (11) | 0.0023 (10) | 0.0015 (8) |
| C7A | 0.0255 (7) | 0.0454 (8) | 0.0425 (8) | −0.0020 (6) | −0.0051 (6) | 0.0094 (6) |
| C1 | 0.0283 (7) | 0.0387 (7) | 0.0420 (8) | 0.0030 (6) | 0.0001 (6) | 0.0077 (6) |
| C10 | 0.0782 (14) | 0.0562 (10) | 0.0464 (9) | 0.0000 (11) | 0.0177 (10) | −0.0107 (8) |
| C9 | 0.0599 (11) | 0.0458 (9) | 0.0437 (9) | 0.0058 (8) | 0.0036 (8) | −0.0026 (7) |
| C7 | 0.0440 (10) | 0.0594 (11) | 0.0717 (12) | 0.0174 (8) | 0.0097 (9) | 0.0263 (10) |
Geometric parameters (Å, º)
| O1—C6 | 1.397 (3) | C8—C9 | 1.393 (3) |
| O1—H1 | 0.8400 | C8—C13 | 1.397 (2) |
| O2—C3 | 1.231 (2) | C13—C12 | 1.386 (3) |
| O3—C1 | 1.4074 (19) | C13—H7 | 0.9500 |
| O3—H3 | 0.8400 | C12—C11 | 1.376 (4) |
| N1—C3 | 1.346 (2) | C12—H8 | 0.9500 |
| N1—C5 | 1.450 (2) | C11—C10 | 1.375 (3) |
| N1—C7A | 1.458 (2) | C11—H9 | 0.9500 |
| C6—C5 | 1.517 (2) | C7A—C7 | 1.524 (2) |
| C6—C7 | 1.521 (3) | C7A—C1 | 1.541 (2) |
| C6—H1A | 1.0000 | C7A—H10 | 1.0000 |
| C5—H2A | 0.9900 | C1—H11 | 1.0000 |
| C5—H2B | 0.9900 | C10—C9 | 1.387 (3) |
| C3—C2 | 1.486 (2) | C10—H12 | 0.9500 |
| C2—C4 | 1.342 (2) | C9—H13 | 0.9500 |
| C2—C1 | 1.507 (2) | C7—H14A | 0.9900 |
| C4—C8 | 1.463 (2) | C7—H14B | 0.9900 |
| C4—H5 | 0.9500 | ||
| C6—O1—H1 | 109.5 | C8—C13—H7 | 119.4 |
| C1—O3—H3 | 109.5 | C11—C12—C13 | 119.9 (2) |
| C3—N1—C5 | 126.33 (14) | C11—C12—H8 | 120.1 |
| C3—N1—C7A | 113.99 (12) | C13—C12—H8 | 120.1 |
| C5—N1—C7A | 110.30 (12) | C10—C11—C12 | 119.62 (18) |
| O1—C6—C5 | 106.77 (16) | C10—C11—H9 | 120.2 |
| O1—C6—C7 | 111.99 (19) | C12—C11—H9 | 120.2 |
| C5—C6—C7 | 102.82 (14) | N1—C7A—C7 | 103.95 (13) |
| O1—C6—H1A | 111.6 | N1—C7A—C1 | 105.03 (12) |
| C5—C6—H1A | 111.6 | C7—C7A—C1 | 121.85 (16) |
| C7—C6—H1A | 111.6 | N1—C7A—H10 | 108.4 |
| N1—C5—C6 | 102.46 (13) | C7—C7A—H10 | 108.4 |
| N1—C5—H2A | 111.3 | C1—C7A—H10 | 108.4 |
| C6—C5—H2A | 111.3 | O3—C1—C2 | 111.20 (12) |
| N1—C5—H2B | 111.3 | O3—C1—C7A | 111.48 (13) |
| C6—C5—H2B | 111.3 | C2—C1—C7A | 104.12 (12) |
| H2A—C5—H2B | 109.2 | O3—C1—H11 | 110.0 |
| O2—C3—N1 | 124.34 (16) | C2—C1—H11 | 110.0 |
| O2—C3—C2 | 127.58 (15) | C7A—C1—H11 | 110.0 |
| N1—C3—C2 | 108.08 (12) | C11—C10—C9 | 121.1 (2) |
| C4—C2—C3 | 120.10 (14) | C11—C10—H12 | 119.5 |
| C4—C2—C1 | 132.00 (14) | C9—C10—H12 | 119.5 |
| C3—C2—C1 | 107.86 (12) | C10—C9—C8 | 120.10 (19) |
| C2—C4—C8 | 131.40 (15) | C10—C9—H13 | 120.0 |
| C2—C4—H5 | 114.3 | C8—C9—H13 | 120.0 |
| C8—C4—H5 | 114.3 | C6—C7—C7A | 106.55 (14) |
| C9—C8—C13 | 118.05 (16) | C6—C7—H14A | 110.4 |
| C9—C8—C4 | 125.05 (15) | C7A—C7—H14A | 110.4 |
| C13—C8—C4 | 116.90 (16) | C6—C7—H14B | 110.4 |
| C12—C13—C8 | 121.3 (2) | C7A—C7—H14B | 110.4 |
| C12—C13—H7 | 119.4 | H14A—C7—H14B | 108.6 |
| C3—N1—C5—C6 | −109.15 (17) | C3—N1—C7A—C7 | 130.55 (16) |
| C7A—N1—C5—C6 | 34.96 (17) | C5—N1—C7A—C7 | −18.33 (18) |
| O1—C6—C5—N1 | 81.68 (19) | C3—N1—C7A—C1 | 1.52 (18) |
| C7—C6—C5—N1 | −36.33 (18) | C5—N1—C7A—C1 | −147.35 (13) |
| C5—N1—C3—O2 | −31.5 (3) | C4—C2—C1—O3 | −52.6 (2) |
| C7A—N1—C3—O2 | −174.55 (16) | C3—C2—C1—O3 | 129.73 (14) |
| C5—N1—C3—C2 | 147.63 (14) | C4—C2—C1—C7A | −172.77 (17) |
| C7A—N1—C3—C2 | 4.63 (18) | C3—C2—C1—C7A | 9.56 (16) |
| O2—C3—C2—C4 | −7.9 (3) | N1—C7A—C1—O3 | −126.78 (14) |
| N1—C3—C2—C4 | 172.96 (14) | C7—C7A—C1—O3 | 115.79 (17) |
| O2—C3—C2—C1 | 170.10 (17) | N1—C7A—C1—C2 | −6.80 (16) |
| N1—C3—C2—C1 | −9.04 (17) | C7—C7A—C1—C2 | −124.23 (16) |
| C3—C2—C4—C8 | 173.90 (15) | C12—C11—C10—C9 | 1.0 (3) |
| C1—C2—C4—C8 | −3.5 (3) | C11—C10—C9—C8 | −0.3 (3) |
| C2—C4—C8—C9 | −10.3 (3) | C13—C8—C9—C10 | −1.1 (3) |
| C2—C4—C8—C13 | 170.38 (17) | C4—C8—C9—C10 | 179.60 (17) |
| C9—C8—C13—C12 | 1.8 (3) | O1—C6—C7—C7A | −88.1 (2) |
| C4—C8—C13—C12 | −178.83 (17) | C5—C6—C7—C7A | 26.1 (2) |
| C8—C13—C12—C11 | −1.1 (3) | N1—C7A—C7—C6 | −5.9 (2) |
| C13—C12—C11—C10 | −0.3 (3) | C1—C7A—C7—C6 | 112.09 (18) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O3i | 0.84 | 2.04 | 2.776 (2) | 147 |
| O3—H3···O2ii | 0.84 | 1.85 | 2.6810 (17) | 168 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x−1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2526).
References
- Baumann, K. O. (2007). WO Patent 2007039286; Chem. Abstr. 146, 421836.
- Bruker (2010). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Freire, K. R. L., Tormena, C. F. & Coelho, F. (2011). Synlett, 14, 2059–2063.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
- Oliveira, F. L., Freire, K. R. L., Aparicio, R. & Coelho, F. (2012a). Acta Cryst. E68, o586. [DOI] [PMC free article] [PubMed]
- Oliveira, F. L., Freire, K. R. L., Aparicio, R. & Coelho, F. (2012b). Acta Cryst. E68, o587. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018223/pv2526sup1.cif
Supplementary material file. DOI: 10.1107/S1600536812018223/pv2526Isup2.cml
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018223/pv2526Isup3.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


