Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 28;68(Pt 5):o1573. doi: 10.1107/S1600536812017825

4-[4-(4-Amino-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazol-3-yl]-1,2,5-oxadiazol-3-amine

Si-Yuan Jia a, Bo-Zhou Wang a, Xue-Zhong Fan a, Ping Li b, Seik Weng Ng c,d,*
PMCID: PMC3344668  PMID: 22590430

Abstract

The complete molecule of the compound, C6H4N8O3, is generated by a crystallographic twofold rotation axis that runs through the central ring. The flanking ring is twisted by 20.2 (1)° with respect to the central ring. One of the amino H atoms forms an intra­molecular N—H⋯N hydrogen bond; adjacent mol­ecules are linked by N—H⋯N hydrogen bonds forming a chain running along [10-2].

Related literature  

For the synthesis, see: Kulikov & Kakhova (1994); Zhou et al. (2007).graphic file with name e-68-o1573-scheme1.jpg

Experimental  

Crystal data  

  • C6H4N8O3

  • M r = 236.17

  • Monoclinic, Inline graphic

  • a = 7.1681 (9) Å

  • b = 10.8147 (13) Å

  • c = 12.3448 (18) Å

  • β = 103.155 (1)°

  • V = 931.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.33 × 0.26 × 0.17 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • 2675 measured reflections

  • 1047 independent reflections

  • 933 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.096

  • S = 1.08

  • 1047 reflections

  • 87 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017825/bt5881sup1.cif

e-68-o1573-sup1.cif (12.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017825/bt5881Isup2.hkl

e-68-o1573-Isup2.hkl (52KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017825/bt5881Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯N1 0.90 (2) 2.37 (2) 2.932 (2) 121 (1)
N4—H2⋯N3i 0.87 (2) 2.23 (2) 3.070 (2) 162 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge support from the Equipment Department Preselected Project (grant No. 404060020502) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

We are interested in N-heterocyclic compounds having few hydrogen atoms as these compounds are a source of explosives. In the title compound (Scheme I), the hydrogen atoms constitute an amino group. In NH2–C2N2O–C2N2O–C2N2O–NH2, two amino-subsituted 1,2,5-oxadiazole rings flanking a central 1,2,5-oxadiazole ring; the molecule lies on a twofold rotation axis that relates one flanking ring to the other (Fig. 1). The flanking ring is twisted by 20.2 (1) ° with respect to the central ring. One of the amino H atoms forms an intramolecular hydrogen bond; adjacent molecules are linked by an N–H···N hydrogen bond (Table 1, Fig. 2). to form a chain running along [1 0 -2].

Experimental

3,4-Bis(4'-aminofurazano-3')furoxan was synthesized by using a literature procedure (Zhou et al., 2007). The compound (7.5 g) was dissolved in acetic acid (30 ml). The solution was added to a reducing agent prepared from stannous chloride dihydrate (22.6 g. 100 mm mol) dissolved in acetic anhydride (20 ml), acetic acid (100 ml) and concentrated hydrochloric acid (20 ml). The reduction was performed according to an literature procedure (Kulikov & Kakhova, 1994). The mixture was heated atto 348 K for 8 h. The cool mixture was then poured into water (150 ml). The white precipitate that separated was collected and recrystallized from an ethyl acetate/ether mixture; yield 70%, m.pt. 456–457 K. The purity was established by HPLC to be 99.6%. CH&N elemental analysis. Calculated for C6H4N8O3 (%): C 30.51, N 47.46, H1.69. Found: C 30.41, N 47.58,H 1.61.

Refinement

The H-atoms were located in a difference Fourier map, and were refined freely.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C6H4N8O3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule is located on a twofold rotation axis; symmetry-related atoms are not labeled.

Fig. 2.

Fig. 2.

Hydrogen-bonded chain structure. The intermolecular H bond is drawn as a dashed line, the intramolecular H bond is not shown.

Crystal data

C6H4N8O3 F(000) = 480
Mr = 236.17 Dx = 1.683 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 1575 reflections
a = 7.1681 (9) Å θ = 3.4–27.7°
b = 10.8147 (13) Å µ = 0.14 mm1
c = 12.3448 (18) Å T = 293 K
β = 103.155 (1)° Prism, colorless
V = 931.9 (2) Å3 0.33 × 0.26 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 933 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.014
Graphite monochromator θmax = 27.5°, θmin = 3.4°
ω scans h = −9→9
2675 measured reflections k = −14→13
1047 independent reflections l = −15→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 All H-atom parameters refined
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.219P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1047 reflections Δρmax = 0.28 e Å3
87 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0000 0.80892 (10) 0.7500 0.0471 (3)
O2 0.16242 (12) 0.35531 (8) 0.56878 (8) 0.0482 (3)
N1 0.09563 (14) 0.73719 (9) 0.68904 (8) 0.0431 (3)
N2 0.06415 (14) 0.41475 (9) 0.63634 (9) 0.0446 (3)
N3 0.29963 (15) 0.43342 (9) 0.54042 (9) 0.0453 (3)
N4 0.3974 (2) 0.63687 (11) 0.58898 (12) 0.0626 (4)
H1 0.372 (2) 0.7101 (14) 0.6165 (12) 0.059 (4)*
H2 0.480 (3) 0.6342 (15) 0.5474 (15) 0.064 (5)*
C1 0.06039 (15) 0.62259 (9) 0.71097 (9) 0.0349 (3)
C2 0.13553 (15) 0.52528 (10) 0.65104 (9) 0.0358 (3)
C3 0.28563 (16) 0.53785 (10) 0.59138 (10) 0.0393 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0644 (8) 0.0324 (6) 0.0520 (7) 0.000 0.0291 (6) 0.000
O2 0.0540 (5) 0.0385 (5) 0.0600 (6) −0.0051 (4) 0.0291 (4) −0.0103 (4)
N1 0.0529 (6) 0.0356 (5) 0.0471 (6) −0.0024 (4) 0.0248 (5) −0.0011 (4)
N2 0.0460 (5) 0.0397 (5) 0.0549 (6) −0.0046 (4) 0.0255 (5) −0.0068 (4)
N3 0.0513 (6) 0.0401 (5) 0.0526 (6) 0.0004 (4) 0.0287 (5) −0.0004 (4)
N4 0.0745 (8) 0.0423 (6) 0.0915 (10) −0.0118 (5) 0.0614 (8) −0.0088 (6)
C1 0.0364 (5) 0.0344 (5) 0.0373 (5) −0.0010 (4) 0.0151 (4) 0.0007 (4)
C2 0.0374 (5) 0.0349 (6) 0.0390 (6) −0.0004 (4) 0.0166 (4) 0.0010 (4)
C3 0.0435 (6) 0.0366 (6) 0.0436 (6) 0.0017 (4) 0.0223 (5) 0.0022 (4)

Geometric parameters (Å, º)

O1—N1i 1.3685 (11) N4—C3 1.3419 (16)
O1—N1 1.3686 (11) N4—H1 0.896 (16)
O2—N2 1.3684 (12) N4—H2 0.871 (19)
O2—N3 1.4001 (13) C1—C1i 1.434 (2)
N1—C1 1.3055 (14) C1—C2 1.4582 (15)
N2—C2 1.2967 (15) C2—C3 1.4419 (15)
N3—C3 1.3077 (15)
N1i—O1—N1 110.94 (11) N1—C1—C2 117.95 (9)
N2—O2—N3 110.93 (8) C1i—C1—C2 133.62 (6)
C1—N1—O1 106.22 (9) N2—C2—C3 109.39 (10)
C2—N2—O2 106.07 (9) N2—C2—C1 123.83 (9)
C3—N3—O2 105.40 (9) C3—C2—C1 126.57 (10)
C3—N4—H1 121.5 (10) N3—C3—N4 124.54 (11)
C3—N4—H2 118.5 (11) N3—C3—C2 108.19 (10)
H1—N4—H2 118.6 (15) N4—C3—C2 127.25 (11)
N1—C1—C1i 108.31 (6)
N1i—O1—N1—C1 0.18 (6) N1—C1—C2—C3 17.47 (17)
N3—O2—N2—C2 −0.32 (13) C1i—C1—C2—C3 −167.05 (15)
N2—O2—N3—C3 0.77 (13) O2—N3—C3—N4 177.65 (12)
O1—N1—C1—C1i −0.43 (14) O2—N3—C3—C2 −0.87 (13)
O1—N1—C1—C2 176.12 (8) N2—C2—C3—N3 0.73 (14)
O2—N2—C2—C3 −0.23 (13) C1—C2—C3—N3 −174.16 (11)
O2—N2—C2—C1 174.83 (10) N2—C2—C3—N4 −177.73 (13)
N1—C1—C2—N2 −156.72 (11) C1—C2—C3—N4 7.4 (2)
C1i—C1—C2—N2 18.8 (2)

Symmetry code: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H1···N1 0.90 (2) 2.37 (2) 2.932 (2) 121 (1)
N4—H2···N3ii 0.87 (2) 2.23 (2) 3.070 (2) 162 (2)

Symmetry code: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5881).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kulikov, A. S. & Kakhova, N. N. (1994). Russ. Chem. Bull. 43, 630–632.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  6. Zhou, Y.-S., Li, J.-K. & Huang, X.-P. (2007). Chin. J. Explosives Propellants, 30, 454–556.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812017825/bt5881sup1.cif

e-68-o1573-sup1.cif (12.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812017825/bt5881Isup2.hkl

e-68-o1573-Isup2.hkl (52KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812017825/bt5881Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES