Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Apr 28;68(Pt 5):o1577. doi: 10.1107/S1600536812018168

(3S)-14,16-Dihy­droxy-3-methyl-3,4,5,6,9,10,11,12-octa­hydro-1H-2-benzoxacyclo­tetra­decine-1,7(8H)-dione (zearalanone) monohydrate

Sarah Drzymala a,*, Werner Kraus a, Franziska Emmerling a, Matthias Koch a
PMCID: PMC3344672  PMID: 22590434

Abstract

The absolute configuration of the title compound, C18H24O5·H2O, was not been determined by anomalous-dispersion effects, but has been assigned by reference to an unchanging chiral centre in the synthetic procedure. Intra­molecular O—H⋯O hydrogen bonds stabilize the mol­ecular conformation. In the crystal, O—H⋯O hydrogen bonds link the main mol­ecules and the water mol­ecules, forming an infinite three-dimensional network.

Related literature  

For the preparation of zearalanone from natural zearalenone, see: Urry et al. (1966). For the crystal structures of zearalenone and its derivatives, see: Panneerselvam et al. (1996); Gelo-Pujić et al. (1994); Zhao et al. (2008). For the estrogenic and anabolic effects of zearalenone and its derivatives, see: Mirocha et al. (1968). For the exploitation of zearalanone as an inter­nal standard, see: Berthiller et al. (2005); Maragou et al. (2008); Ren et al. (2007); Shin et al. (2009).graphic file with name e-68-o1577-scheme1.jpg

Experimental  

Crystal data  

  • C18H24O5·H2O

  • M r = 338.39

  • Orthorhombic, Inline graphic

  • a = 8.2727 (11) Å

  • b = 24.579 (3) Å

  • c = 9.3703 (14) Å

  • V = 1905.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.45 × 0.25 × 0.1 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.151, T max = 0.477

  • 20473 measured reflections

  • 4626 independent reflections

  • 2870 reflections with I > 2σ(I)

  • R int = 0.109

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.134

  • S = 0.90

  • 4626 reflections

  • 225 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018168/fj2544sup1.cif

e-68-o1577-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018168/fj2544Isup2.hkl

e-68-o1577-Isup2.hkl (226.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018168/fj2544Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O6 0.82 1.87 2.693 (2) 176
O5—H5A⋯O2 0.82 1.86 2.581 (2) 147
O6—H6C⋯O3i 0.96 (2) 1.85 (2) 2.810 (3) 178 (3)
O6—H6D⋯O5ii 0.96 (2) 1.95 (2) 2.887 (2) 164 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Robert Köppen from the Federal Institute for Materials Research and Testing (BAM) for his assistance in obtaining zearalanone crystals.

supplementary crystallographic information

Comment

Zearalanone (ZAN) is a semisynthetic resorcylic acid lactone (RAL) belonging to the group of Zearalenone (ZEN) analoga. ZAN was first prepared by catalytic hydrogenation of the double bond between C11 and C12 of natural ZEN (Urry et al., 1966).

ZEN is a well known crop contaminant produced by a variety of Fusarium fungi. Its crystal structure was elucidated by Panneerselvam and colleagues (1996). Since the first isolation of ZEN from Fungi, a range of structurally closely related analoga have been isolated or prepared from ZEN (Gelo-Pujić et al., 1994, Zhao et al., 2008).

These RALs exhibit interesting estrogenic and anabolic effects due to their coupling with the estrogenic receptors alpha and beta (Mirocha et al., 1968). Hence, ZAN was patented as a growth promoter in cattle as early as 1966 (U. S. P., 3239354). Furthermore, ZAN is not occurring in food, wherefore it was exploited as an internal standard for ZEN and its metabolites (Berthiller et al., 2005, Maragou et al., 2008, Ren et al., 2007, Shin et al., 2009).

The compound crystallizes in the orthorhombic space group P212121. The compound has a macrocyclic structure. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The absolute configuration could not be defined confidently based on the single-crystal diffraction data. The isomeric purity of the title compound was confirmed by 1H-NMR, HPLC-DAD and –MS/MS data. Besides the intramolecular hydrogen bonds between O5—H5A and O2, each molecule is connected to three adjacent water molecules via intermolecular hydrogen bonds (see dashed red bonds in Fig. 2). As a result a three dimensional network is formed.

Experimental

Zearalanone was obtained from Toronto Research Chemicals (Canada, purity 98.0%). 5 mg (15.6 µmol) were weighed in a 1.5 ml HPLC glass vial and solved in 0.5 ml DCM. Subsequently, 0.3 ml of n-Hexane were added. Colorless crystals of the title compound were formed after 7 days of slow solvent evaporation at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms, and 0.82 Å, Uiso = 1.5Ueq (C) for hydroxyl groups. The water hydrogen atoms were treated independently. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

: ORTEP representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

: View of the unit cell of the title compound, showing the hydrogen-bonded network. Hydrogen bonds are drawn as dashed red lines.

Crystal data

C18H24O5·H2O F(000) = 728
Mr = 338.39 Dx = 1.180 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5584 reflections
a = 8.2727 (11) Å θ = 2.3–25.7°
b = 24.579 (3) Å µ = 0.09 mm1
c = 9.3703 (14) Å T = 296 K
V = 1905.3 (5) Å3 Block, colourless
Z = 4 0.45 × 0.25 × 0.1 mm

Data collection

Bruker APEXII CCD diffractometer 4626 independent reflections
Radiation source: fine-focus sealed tube 2870 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.109
φ and ω scans θmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.151, Tmax = 0.477 k = −32→23
20473 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0708P)2] where P = (Fo2 + 2Fc2)/3
4626 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 0.18 e Å3
3 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.02619 (16) 0.98111 (5) 0.36315 (17) 0.0478 (4)
O2 −0.16664 (17) 1.05917 (5) 0.35375 (17) 0.0554 (4)
O3 0.1136 (3) 0.77977 (7) 0.4127 (2) 0.0839 (6)
O4 0.5417 (2) 1.15308 (6) 0.4798 (2) 0.0680 (5)
H4A 0.5221 1.1805 0.5264 0.102*
O5 −0.03447 (19) 1.14487 (6) 0.46197 (19) 0.0616 (4)
H5A −0.1084 1.1253 0.4345 0.092*
C1 −0.0353 (2) 1.03555 (8) 0.3654 (2) 0.0425 (5)
C2 −0.2267 (3) 0.95504 (10) 0.1831 (2) 0.0589 (6)
H2A −0.2494 0.9924 0.1610 0.088*
H2B −0.3218 0.9335 0.1667 0.088*
H2C −0.1406 0.9422 0.1232 0.088*
C3 −0.1771 (2) 0.95029 (8) 0.3378 (2) 0.0455 (5)
H3A −0.2632 0.9647 0.3988 0.055*
C4 −0.1378 (3) 0.89190 (8) 0.3826 (2) 0.0505 (5)
H4B −0.2274 0.8687 0.3553 0.061*
H4C −0.0435 0.8799 0.3299 0.061*
C5 −0.1054 (3) 0.88393 (8) 0.5415 (2) 0.0552 (5)
H5B −0.2021 0.8935 0.5945 0.066*
H5C −0.0201 0.9086 0.5708 0.066*
C6 −0.0556 (3) 0.82491 (9) 0.5808 (3) 0.0654 (7)
H6A −0.0491 0.8215 0.6837 0.078*
H6B −0.1377 0.7998 0.5470 0.078*
C7 0.1051 (3) 0.80991 (8) 0.5160 (3) 0.0589 (6)
C8 0.2570 (3) 0.83280 (9) 0.5834 (3) 0.0615 (6)
H8A 0.2925 0.8081 0.6578 0.074*
H8B 0.2305 0.8672 0.6284 0.074*
C9 0.3968 (3) 0.84196 (8) 0.4802 (3) 0.0694 (7)
H9A 0.4214 0.8079 0.4328 0.083*
H9B 0.4916 0.8526 0.5344 0.083*
C10 0.3630 (3) 0.88553 (8) 0.3663 (3) 0.0606 (6)
H10A 0.4530 0.8861 0.3000 0.073*
H10B 0.2675 0.8749 0.3132 0.073*
C11 0.3374 (3) 0.94306 (7) 0.4230 (2) 0.0507 (5)
H11A 0.4313 0.9536 0.4786 0.061*
H11B 0.2447 0.9431 0.4863 0.061*
C12 0.3099 (3) 0.98564 (7) 0.3038 (2) 0.0464 (5)
H12A 0.4046 0.9868 0.2428 0.056*
H12B 0.2187 0.9744 0.2458 0.056*
C13 0.4138 (3) 1.07391 (8) 0.3932 (2) 0.0477 (5)
H13A 0.5159 1.0599 0.3737 0.057*
C14 0.4003 (3) 1.12590 (8) 0.4520 (2) 0.0510 (5)
C15 0.2481 (3) 1.14844 (8) 0.4758 (2) 0.0516 (5)
H15A 0.2387 1.1831 0.5144 0.062*
C16 0.1105 (3) 1.11881 (8) 0.4414 (2) 0.0463 (5)
C17 0.1200 (2) 1.06443 (7) 0.3887 (2) 0.0410 (5)
C18 0.2776 (2) 1.04239 (7) 0.3628 (2) 0.0415 (4)
O6 0.4912 (3) 1.24388 (7) 0.6343 (2) 0.1064 (8)
H6C 0.458 (5) 1.2351 (13) 0.730 (2) 0.162 (17)*
H6D 0.484 (5) 1.2781 (8) 0.585 (3) 0.142 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0409 (7) 0.0411 (7) 0.0614 (9) 0.0008 (6) −0.0041 (7) 0.0008 (7)
O2 0.0449 (8) 0.0494 (7) 0.0720 (10) 0.0083 (6) 0.0012 (8) 0.0019 (7)
O3 0.1077 (16) 0.0612 (10) 0.0827 (13) 0.0028 (10) −0.0138 (12) −0.0180 (10)
O4 0.0628 (10) 0.0552 (9) 0.0859 (13) −0.0091 (8) −0.0132 (9) −0.0058 (9)
O5 0.0568 (9) 0.0424 (7) 0.0856 (12) 0.0099 (7) 0.0087 (9) −0.0011 (8)
C1 0.0454 (11) 0.0442 (10) 0.0379 (10) 0.0057 (9) 0.0052 (10) 0.0050 (9)
C2 0.0575 (14) 0.0706 (14) 0.0487 (12) 0.0015 (11) −0.0035 (11) −0.0040 (11)
C3 0.0379 (10) 0.0493 (10) 0.0493 (12) −0.0020 (9) 0.0003 (10) −0.0056 (9)
C4 0.0491 (13) 0.0473 (11) 0.0551 (13) −0.0063 (9) −0.0022 (11) −0.0060 (9)
C5 0.0613 (14) 0.0511 (11) 0.0531 (13) −0.0053 (11) 0.0037 (13) 0.0009 (10)
C6 0.0741 (16) 0.0544 (13) 0.0676 (16) −0.0143 (12) −0.0036 (14) 0.0111 (11)
C7 0.0837 (17) 0.0355 (9) 0.0574 (14) −0.0020 (11) −0.0090 (14) 0.0074 (10)
C8 0.0753 (16) 0.0467 (11) 0.0627 (15) 0.0016 (11) −0.0158 (14) 0.0093 (11)
C9 0.0693 (16) 0.0412 (11) 0.098 (2) 0.0113 (11) 0.0005 (16) 0.0084 (12)
C10 0.0639 (15) 0.0454 (11) 0.0725 (16) 0.0075 (10) 0.0122 (14) 0.0020 (11)
C11 0.0510 (12) 0.0391 (10) 0.0622 (13) 0.0030 (9) −0.0041 (11) 0.0017 (9)
C12 0.0448 (11) 0.0426 (10) 0.0517 (12) 0.0038 (9) 0.0053 (10) −0.0010 (9)
C13 0.0441 (11) 0.0449 (10) 0.0541 (13) 0.0032 (9) −0.0006 (10) 0.0044 (9)
C14 0.0553 (13) 0.0465 (10) 0.0511 (13) −0.0085 (10) −0.0081 (12) 0.0078 (10)
C15 0.0659 (14) 0.0341 (9) 0.0548 (13) −0.0002 (10) 0.0007 (12) −0.0004 (9)
C16 0.0535 (12) 0.0386 (9) 0.0469 (12) 0.0071 (9) 0.0053 (11) 0.0091 (9)
C17 0.0452 (11) 0.0381 (9) 0.0398 (11) 0.0024 (8) 0.0015 (10) 0.0070 (8)
C18 0.0476 (11) 0.0379 (9) 0.0391 (10) 0.0032 (8) 0.0003 (10) 0.0078 (8)
O6 0.187 (3) 0.0491 (10) 0.0833 (15) −0.0237 (12) 0.0217 (17) 0.0017 (10)

Geometric parameters (Å, º)

O1—C1 1.340 (2) C8—C9 1.524 (4)
O1—C3 1.479 (2) C8—H8A 0.9700
O2—C1 1.237 (2) C8—H8B 0.9700
O3—C7 1.221 (3) C9—C10 1.538 (3)
O4—C14 1.372 (3) C9—H9A 0.9700
O4—H4A 0.8200 C9—H9B 0.9700
O5—C16 1.373 (3) C10—C11 1.525 (3)
O5—H5A 0.8200 C10—H10A 0.9700
C1—C17 1.484 (3) C10—H10B 0.9700
C2—C3 1.511 (3) C11—C12 1.548 (3)
C2—H2A 0.9600 C11—H11A 0.9700
C2—H2B 0.9600 C11—H11B 0.9700
C2—H2C 0.9600 C12—C18 1.524 (3)
C3—C4 1.531 (3) C12—H12A 0.9700
C3—H3A 0.9800 C12—H12B 0.9700
C4—C5 1.525 (3) C13—C18 1.396 (3)
C4—H4B 0.9700 C13—C14 1.396 (3)
C4—H4C 0.9700 C13—H13A 0.9300
C5—C6 1.552 (3) C14—C15 1.394 (3)
C5—H5B 0.9700 C15—C16 1.389 (3)
C5—H5C 0.9700 C15—H15A 0.9300
C6—C7 1.507 (4) C16—C17 1.427 (3)
C6—H6A 0.9700 C17—C18 1.433 (3)
C6—H6B 0.9700 O6—H6C 0.960 (10)
C7—C8 1.515 (3) O6—H6D 0.961 (10)
C1—O1—C3 117.78 (15) H8A—C8—H8B 107.5
C14—O4—H4A 109.5 C8—C9—C10 113.91 (19)
C16—O5—H5A 109.5 C8—C9—H9A 108.8
O2—C1—O1 121.12 (18) C10—C9—H9A 108.8
O2—C1—C17 123.31 (17) C8—C9—H9B 108.8
O1—C1—C17 115.53 (16) C10—C9—H9B 108.8
C3—C2—H2A 109.5 H9A—C9—H9B 107.7
C3—C2—H2B 109.5 C11—C10—C9 115.4 (2)
H2A—C2—H2B 109.5 C11—C10—H10A 108.4
C3—C2—H2C 109.5 C9—C10—H10A 108.4
H2A—C2—H2C 109.5 C11—C10—H10B 108.4
H2B—C2—H2C 109.5 C9—C10—H10B 108.4
O1—C3—C2 110.14 (18) H10A—C10—H10B 107.5
O1—C3—C4 104.88 (15) C10—C11—C12 113.32 (19)
C2—C3—C4 113.18 (18) C10—C11—H11A 108.9
O1—C3—H3A 109.5 C12—C11—H11A 108.9
C2—C3—H3A 109.5 C10—C11—H11B 108.9
C4—C3—H3A 109.5 C12—C11—H11B 108.9
C5—C4—C3 115.21 (17) H11A—C11—H11B 107.7
C5—C4—H4B 108.5 C18—C12—C11 112.51 (17)
C3—C4—H4B 108.5 C18—C12—H12A 109.1
C5—C4—H4C 108.5 C11—C12—H12A 109.1
C3—C4—H4C 108.5 C18—C12—H12B 109.1
H4B—C4—H4C 107.5 C11—C12—H12B 109.1
C4—C5—C6 113.45 (18) H12A—C12—H12B 107.8
C4—C5—H5B 108.9 C18—C13—C14 121.60 (19)
C6—C5—H5B 108.9 C18—C13—H13A 119.2
C4—C5—H5C 108.9 C14—C13—H13A 119.2
C6—C5—H5C 108.9 O4—C14—C15 123.12 (18)
H5B—C5—H5C 107.7 O4—C14—C13 116.9 (2)
C7—C6—C5 111.56 (19) C15—C14—C13 119.94 (19)
C7—C6—H6A 109.3 C16—C15—C14 119.67 (18)
C5—C6—H6A 109.3 C16—C15—H15A 120.2
C7—C6—H6B 109.3 C14—C15—H15A 120.2
C5—C6—H6B 109.3 O5—C16—C15 116.03 (17)
H6A—C6—H6B 108.0 O5—C16—C17 122.26 (19)
O3—C7—C6 121.3 (2) C15—C16—C17 121.71 (19)
O3—C7—C8 120.5 (3) C16—C17—C18 117.60 (18)
C6—C7—C8 118.2 (2) C16—C17—C1 116.80 (17)
C7—C8—C9 114.8 (2) C18—C17—C1 125.60 (16)
C7—C8—H8A 108.6 C13—C18—C17 119.32 (17)
C9—C8—H8A 108.6 C13—C18—C12 116.14 (17)
C7—C8—H8B 108.6 C17—C18—C12 124.54 (17)
C9—C8—H8B 108.6 H6C—O6—H6D 128.6 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O6 0.82 1.87 2.693 (2) 176
O5—H5A···O2 0.82 1.86 2.581 (2) 147
O6—H6C···O3i 0.96 (2) 1.85 (2) 2.810 (3) 178 (3)
O6—H6D···O5ii 0.96 (2) 1.95 (2) 2.887 (2) 164 (2)

Symmetry codes: (i) −x+1/2, −y+2, z+1/2; (ii) x+1/2, −y+5/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2544).

References

  1. Berthiller, F., Schuhmacher, R., Buttinger, G. & Krska, R. (2005). J. Chromatogr. A, 1062, 209–216. [DOI] [PubMed]
  2. Bruker (2001). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). Tetrahedron, 50, 13753–13764.
  4. Maragou, N. C., Rosenberg, E., Thomaidis, N. S. & Koupparis, M. A. (2008). J. Chromatogr. A, 1202, 47–57. [DOI] [PubMed]
  5. Mirocha, C. J., Christensen, C. M. & Nelson, G. H. (1968). Cancer Res. 28, 2319–2322. [PubMed]
  6. Panneerselvam, K., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 3095–3097.
  7. Ren, Y., Zhang, Y., Shao, S., Cai, Z., Feng, L., Pan, H. & Wang, Z. (2007). J. Chromatogr. A, 1143, 48–64. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shin, B. S., Hong, S. H., Hwang, S. W., Kim, H. J., Lee, J. B., Yoon, H. S., Kim do, J. & Yoo, S. D. (2009). Biomed. Chromatogr. 23, 1014–1021. [DOI] [PubMed]
  10. Urry, W. H., Wehrmeister, H. L., Hodge, E. B. & Hidy, P. H. (1966). Tetrahedron Lett. 7, 3109–3114.
  11. Zhao, L.-L., Gai, Y., Kobayashi, H., Hu, C.-Q. & Zhang, H.-P. (2008). Acta Cryst. E64, o999. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018168/fj2544sup1.cif

e-68-o1577-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018168/fj2544Isup2.hkl

e-68-o1577-Isup2.hkl (226.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018168/fj2544Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES