Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Dec 11;20(23):6355–6361. doi: 10.1093/nar/20.23.6355

Organization of the unr/N-ras locus: characterization of the promoter region of the human unr gene.

H Jacquemin-Sablon 1, F Dautry 1
PMCID: PMC334527  PMID: 1475196

Abstract

Investigations of the structure and expression of the N-ras gene in mammals has led to the identification of another gene designated unr, which is located immediately upstream of N-ras. These two genes are transcribed in the same orientation and the intergenic distance is of the order of 150 nucleotides. This genetic organization has been observed in the genome of guinea pig, rat, mouse and man with a very high level of sequence conservation in the intergenic region. This unusual gene clustering suggests that the transcriptional regulation of this locus could involve common regulatory sequences as well as transcriptional interference between the two genes. In this study, we have isolated and characterized the human unr promoter. A cluster of transcription initiation sites was mapped by primer extension and RNase protection and shown to be located in a CpG island devoid of TATA and CAAT boxes. Functional organization of the promoter was investigated by measuring the ability of a set of 5' deletions within a1 kb promoter region to drive the expression of the luciferase gene. These studies indicated a very strong promoter activity in NIH 3T3 cells and the presence of positive and negative regulatory domains. Nevertheless, a 90 bp fragment showed the same level of promoter activity as the 1 kb fragment. We also showed that ras genes can transactivate the unr promoter activity and that the 90 bp fragment responded to this transactivation.

Full text

PDF
6355

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arenzana-Seisdedos F., Israël N., Bachelerie F., Hazan U., Alcami J., Dautry F., Virelizier J. L. c-Ha-ras transfection induces human immunodeficiency virus (HIV) transcription through the HIV-enhancer in human fibroblasts and astrocytes. Oncogene. 1989 Nov;4(11):1359–1362. [PubMed] [Google Scholar]
  2. Barbacid M. ras genes. Annu Rev Biochem. 1987;56:779–827. doi: 10.1146/annurev.bi.56.070187.004023. [DOI] [PubMed] [Google Scholar]
  3. Binétruy B., Smeal T., Karin M. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature. 1991 May 9;351(6322):122–127. doi: 10.1038/351122a0. [DOI] [PubMed] [Google Scholar]
  4. Bird A. P. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. doi: 10.1038/321209a0. [DOI] [PubMed] [Google Scholar]
  5. Cepko C. L., Roberts B. E., Mulligan R. C. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell. 1984 Jul;37(3):1053–1062. doi: 10.1016/0092-8674(84)90440-9. [DOI] [PubMed] [Google Scholar]
  6. Doniger J., DiPaolo J. A. Coordinate N-ras mRNA up-regulation with mutational activation in tumorigenic guinea pig cells. Nucleic Acids Res. 1988 Feb 11;16(3):969–980. doi: 10.1093/nar/16.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doniger J., Landsman D., Gonda M. A., Wistow G. The product of unr, the highly conserved gene upstream of N-ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif. New Biol. 1992 Apr;4(4):389–395. [PubMed] [Google Scholar]
  8. Irniger S., Egli C. M., Kuenzler M., Braus G. H. The yeast actin intron contains a cryptic promoter that can be switched on by preventing transcriptional interference. Nucleic Acids Res. 1992 Sep 25;20(18):4733–4739. doi: 10.1093/nar/20.18.4733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jeffers M., Paciucci R., Pellicer A. Characterization of unr; a gene closely linked to N-ras. Nucleic Acids Res. 1990 Aug 25;18(16):4891–4899. [PMC free article] [PubMed] [Google Scholar]
  10. Kellum R., Schedl P. A position-effect assay for boundaries of higher order chromosomal domains. Cell. 1991 Mar 8;64(5):941–950. doi: 10.1016/0092-8674(91)90318-s. [DOI] [PubMed] [Google Scholar]
  11. Li K., Warner C. K., Hodge J. A., Minoshima S., Kudoh J., Fukuyama R., Maekawa M., Shimizu Y., Shimizu N., Wallace D. C. A human muscle adenine nucleotide translocator gene has four exons, is located on chromosome 4, and is differentially expressed. J Biol Chem. 1989 Aug 25;264(24):13998–14004. [PubMed] [Google Scholar]
  12. McKnight R. A., Shamay A., Sankaran L., Wall R. J., Hennighausen L. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6943–6947. doi: 10.1073/pnas.89.15.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicolaiew N., Triqueneaux G., Dautry F. Organization of the human N-ras locus: characterization of a gene located immediately upstream of N-ras. Oncogene. 1991 May;6(5):721–730. [PubMed] [Google Scholar]
  14. Paciucci R., Pellicer A. Dissection of the mouse N-ras gene upstream regulatory sequences and identification of the promoter and a negative regulatory element. Mol Cell Biol. 1991 Mar;11(3):1334–1343. doi: 10.1128/mcb.11.3.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paterson H., Reeves B., Brown R., Hall A., Furth M., Bos J., Jones P., Marshall C. Activated N-ras controls the transformed phenotype of HT1080 human fibrosarcoma cells. Cell. 1987 Dec 4;51(5):803–812. doi: 10.1016/0092-8674(87)90103-6. [DOI] [PubMed] [Google Scholar]
  16. Proudfoot N. J. Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature. 1986 Aug 7;322(6079):562–565. doi: 10.1038/322562a0. [DOI] [PubMed] [Google Scholar]
  17. Pugh B. F., Tjian R. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 1991 Nov;5(11):1935–1945. doi: 10.1101/gad.5.11.1935. [DOI] [PubMed] [Google Scholar]
  18. Quaife C. J., Pinkert C. A., Ornitz D. M., Palmiter R. D., Brinster R. L. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell. 1987 Mar 27;48(6):1023–1034. doi: 10.1016/0092-8674(87)90710-0. [DOI] [PubMed] [Google Scholar]
  19. Raymond M., Gros P. Cell-specific activity of cis-acting regulatory elements in the promoter of the mouse multidrug resistance gene mdr1. Mol Cell Biol. 1990 Nov;10(11):6036–6040. doi: 10.1128/mcb.10.11.6036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwartz O., Virelizier J. L., Montagnier L., Hazan U. A microtransfection method using the luciferase-encoding reporter gene for the assay of human immunodeficiency virus LTR promoter activity. Gene. 1990 Apr 16;88(2):197–205. doi: 10.1016/0378-1119(90)90032-m. [DOI] [PubMed] [Google Scholar]
  21. Shih C., Padhy L. C., Murray M., Weinberg R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981 Mar 19;290(5803):261–264. doi: 10.1038/290261a0. [DOI] [PubMed] [Google Scholar]
  22. Somma M. P., Pisano C., Lavia P. The housekeeping promoter from the mouse CpG island HTF9 contains multiple protein-binding elements that are functionally redundant. Nucleic Acids Res. 1991 Jun 11;19(11):2817–2824. doi: 10.1093/nar/19.11.2817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stief A., Winter D. M., Strätling W. H., Sippel A. E. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature. 1989 Sep 28;341(6240):343–345. doi: 10.1038/341343a0. [DOI] [PubMed] [Google Scholar]
  24. Suzuki H., Hosokawa Y., Toda H., Nishikimi M., Ozawa T. Common protein-binding sites in the 5'-flanking regions of human genes for cytochrome c1 and ubiquinone-binding protein. J Biol Chem. 1990 May 15;265(14):8159–8163. [PubMed] [Google Scholar]
  25. Thorn J. T., Todd A. V., Warrilow D., Watt F., Molloy P. L., Iland H. J. Characterization of the human N-ras promoter region. Oncogene. 1991 Oct;6(10):1843–1850. [PubMed] [Google Scholar]
  26. Wasylyk C., Flores P., Gutman A., Wasylyk B. PEA3 is a nuclear target for transcription activation by non-nuclear oncogenes. EMBO J. 1989 Nov;8(11):3371–3378. doi: 10.1002/j.1460-2075.1989.tb08500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Widen S. G., Kedar P., Wilson S. H. Human beta-polymerase gene. Structure of the 5'-flanking region and active promoter. J Biol Chem. 1988 Nov 15;263(32):16992–16998. [PubMed] [Google Scholar]
  28. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES