Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Dec 25;20(24):6543–6548. doi: 10.1093/nar/20.24.6543

Fidelity of replication of the leading and the lagging DNA strands opposite N-methyl-N-nitrosourea-induced DNA damage in human cells.

T Basic-Zaninovic 1, F Palombo 1, M Bignami 1, E Dogliotti 1
PMCID: PMC334569  PMID: 1336179

Abstract

Semi-conservative replication of double-stranded DNA in eukaryotic cells is an asymmetric process involving leading and lagging strand synthesis and different DNA polymerases. We report a study to analyze the effect of these asymmetries when the replication machinery encounters alkylation-induced DNA adducts. The model system is an EBV-derived shuttle vector which replicates in synchrony with the host human cells and carries as marker gene the bacterial gpt gene. A preferential distribution of N-methyl-N-nitrosourea (MNU)-induced mutations in the non transcribed DNA strand of the shuttle vector pF1-EBV was previously reported. The hypermutated strand was the leading strand. To test whether the different fidelity of DNA polymerases synthesizing the leading and the lagging strands might contribute to MNU-induced mutation distribution the mutagenesis study was repeated on the shuttle vector pTF-EBV which contains the gpt gene in the inverted orientation. We show that the base substitution error rates on an alkylated substrate are similar for the replication of the leading and lagging strands. Moreover, we present evidence that the fidelity of replication opposite O6-methylguanine adducts of both the leading and lagging strands is not affected by the 3' flanking base. The preferential targeting of mutations after replication of alkylated DNA is mainly driven by the base at the 5' side of the G residues.

Full text

PDF
6543

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bambara R. A., Jessee C. B. Properties of DNA polymerases delta and epsilon, and their roles in eukaryotic DNA replication. Biochim Biophys Acta. 1991 Jan 17;1088(1):11–24. doi: 10.1016/0167-4781(91)90147-e. [DOI] [PubMed] [Google Scholar]
  2. Benigni R., Palombo F., Dogliotti E. Multivariate statistical analysis of mutational spectra of alkylating agents. Mutat Res. 1992 May;267(1):77–88. doi: 10.1016/0027-5107(92)90112-f. [DOI] [PubMed] [Google Scholar]
  3. Bignami M., Karran P., Lane D. P. Site-dependent inhibition by single O6-methylguanine bases of SV40 T-antigen interactions with the viral origin of replication. Biochemistry. 1991 Mar 19;30(11):2857–2863. doi: 10.1021/bi00225a018. [DOI] [PubMed] [Google Scholar]
  4. Brewer B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell. 1988 Jun 3;53(5):679–686. doi: 10.1016/0092-8674(88)90086-4. [DOI] [PubMed] [Google Scholar]
  5. Burgers P. M. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem. 1991 Nov 25;266(33):22698–22706. [PubMed] [Google Scholar]
  6. Dolan M. E., Oplinger M., Pegg A. E. Sequence specificity of guanine alkylation and repair. Carcinogenesis. 1988 Nov;9(11):2139–2143. doi: 10.1093/carcin/9.11.2139. [DOI] [PubMed] [Google Scholar]
  7. Dorado G., Steingrimsdottir H., Arlett C. F., Lehmann A. R. Molecular analysis of ultraviolet-induced mutations in a xeroderma pigmentosum cell line. J Mol Biol. 1991 Jan 20;217(2):217–222. doi: 10.1016/0022-2836(91)90533-c. [DOI] [PubMed] [Google Scholar]
  8. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gahn T. A., Schildkraut C. L. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell. 1989 Aug 11;58(3):527–535. doi: 10.1016/0092-8674(89)90433-9. [DOI] [PubMed] [Google Scholar]
  10. Georgiadis P., Smith C. A., Swann P. F. Nitrosamine-induced cancer: selective repair and conformational differences between O6-methylguanine residues in different positions in and around codon 12 of rat H-ras. Cancer Res. 1991 Nov 1;51(21):5843–5850. [PubMed] [Google Scholar]
  11. Gordon A. J., Glickman B. W. Protein domain structure influences observed distribution of mutation. Mutat Res. 1988 Jun;208(2):105–108. doi: 10.1016/s0165-7992(98)90008-2. [DOI] [PubMed] [Google Scholar]
  12. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  13. Griffin B. E., Björck E., Bjursell G., Lindahl T. Sequence complexity of circular Epstein-Bar virus DNA in transformed cells. J Virol. 1981 Oct;40(1):11–19. doi: 10.1128/jvi.40.1.11-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris A. L., Karran P., Lindahl T. O6-Methylguanine-DNA methyltransferase of human lymphoid cells: structural and kinetic properties and absence in repair-deficient cells. Cancer Res. 1983 Jul;43(7):3247–3252. [PubMed] [Google Scholar]
  15. Hurwitz J., Dean F. B., Kwong A. D., Lee S. H. The in vitro replication of DNA containing the SV40 origin. J Biol Chem. 1990 Oct 25;265(30):18043–18046. [PubMed] [Google Scholar]
  16. Hübscher U., Thömmes P. DNA polymerase epsilon: in search of a function. Trends Biochem Sci. 1992 Feb;17(2):55–58. doi: 10.1016/0968-0004(92)90499-y. [DOI] [PubMed] [Google Scholar]
  17. Larson K., Sahm J., Shenkar R., Strauss B. Methylation-induced blocks to in vitro DNA replication. Mutat Res. 1985 Jun-Jul;150(1-2):77–84. doi: 10.1016/0027-5107(85)90103-4. [DOI] [PubMed] [Google Scholar]
  18. Linn S. How many pols does it take to replicate nuclear DNA? Cell. 1991 Jul 26;66(2):185–187. doi: 10.1016/0092-8674(91)90608-2. [DOI] [PubMed] [Google Scholar]
  19. Lukash L. L., Boldt J., Pegg A. E., Dolan M. E., Maher V. M., McCormick J. J. Effect of O6-alkylguanine-DNA alkyltransferase on the frequency and spectrum of mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine in the HPRT gene of diploid human fibroblasts. Mutat Res. 1991 Sep-Oct;250(1-2):397–409. doi: 10.1016/0027-5107(91)90196-u. [DOI] [PubMed] [Google Scholar]
  20. Lupton S., Levine A. J. Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol Cell Biol. 1985 Oct;5(10):2533–2542. doi: 10.1128/mcb.5.10.2533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McGregor W. G., Chen R. H., Lukash L., Maher V. M., McCormick J. J. Cell cycle-dependent strand bias for UV-induced mutations in the transcribed strand of excision repair-proficient human fibroblasts but not in repair-deficient cells. Mol Cell Biol. 1991 Apr;11(4):1927–1934. doi: 10.1128/mcb.11.4.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mendelman L. V., Boosalis M. S., Petruska J., Goodman M. F. Nearest neighbor influences on DNA polymerase insertion fidelity. J Biol Chem. 1989 Aug 25;264(24):14415–14423. [PubMed] [Google Scholar]
  23. Menichini P., Vrieling H., van Zeeland A. A. Strand-specific mutation spectra in repair-proficient and repair-deficient hamster cells. Mutat Res. 1991 Nov;251(1):143–155. doi: 10.1016/0027-5107(91)90224-c. [DOI] [PubMed] [Google Scholar]
  24. Morrison A., Araki H., Clark A. B., Hamatake R. K., Sugino A. A third essential DNA polymerase in S. cerevisiae. Cell. 1990 Sep 21;62(6):1143–1151. doi: 10.1016/0092-8674(90)90391-q. [DOI] [PubMed] [Google Scholar]
  25. Palombo F., Bignami M., Dogliotti E. Non-phenotypic selection of N-methyl-N-nitrosourea-induced mutations in human cells. Nucleic Acids Res. 1992 Mar 25;20(6):1349–1354. doi: 10.1093/nar/20.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Palombo F., Dogliotti E. Construction of an EBV-derived shuttle vector for studying the influence of transcription on mutagenesis. Biochim Biophys Acta. 1989 Dec 22;1009(3):251–256. doi: 10.1016/0167-4781(89)90110-3. [DOI] [PubMed] [Google Scholar]
  27. Palombo F., Kohfeldt E., Calcagnile A., Nehls P., Dogliotti E. N-methyl-N-nitrosourea-induced mutations in human cells. Effects of the transcriptional activity of the target gene. J Mol Biol. 1992 Feb 5;223(3):587–594. doi: 10.1016/0022-2836(92)90974-o. [DOI] [PubMed] [Google Scholar]
  28. Pegg A. E. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 1990 Oct 1;50(19):6119–6129. [PubMed] [Google Scholar]
  29. Richardson F. C., Boucheron J. A., Skopek T. R., Swenberg J. A. Formation of O6-methyldeoxyguanosine at specific sites in a synthetic oligonucleotide designed to resemble a known mutagenic hotspot. J Biol Chem. 1989 Jan 15;264(2):838–841. [PubMed] [Google Scholar]
  30. Roberts J. D., Thomas D. C., Kunkel T. A. Exonucleolytic proofreading of leading and lagging strand DNA replication errors. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3465–3469. doi: 10.1073/pnas.88.8.3465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schaaper R. M. Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: role of DNA mismatch repair. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8126–8130. doi: 10.1073/pnas.85.21.8126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Seetharam S., Seidman M. M. Modulation of an ultraviolet mutational hotspot in a shuttle vector Xeroderma cells. Nucleic Acids Res. 1991 Apr 11;19(7):1601–1604. doi: 10.1093/nar/19.7.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sendowski K., Rajewsky M. F. DNA sequence dependence of guanine-O6 alkylation by the N-nitroso carcinogens N-methyl- and N-ethyl-N-nitrosourea. Mutat Res. 1991 Sep-Oct;250(1-2):153–160. doi: 10.1016/0027-5107(91)90171-j. [DOI] [PubMed] [Google Scholar]
  35. Singer B., Chavez F., Goodman M. F., Essigmann J. M., Dosanjh M. K. Effect of 3' flanking neighbors on kinetics of pairing of dCTP or dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Escherichia coli DNA polymerase I is used. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8271–8274. doi: 10.1073/pnas.86.21.8271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stillman B. Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol. 1989;5:197–245. doi: 10.1146/annurev.cb.05.110189.001213. [DOI] [PubMed] [Google Scholar]
  37. Syvaoja J., Linn S. Characterization of a large form of DNA polymerase delta from HeLa cells that is insensitive to proliferating cell nuclear antigen. J Biol Chem. 1989 Feb 15;264(5):2489–2497. [PubMed] [Google Scholar]
  38. Thomas D. C., Roberts J. D., Sabatino R. D., Myers T. W., Tan C. K., Downey K. M., So A. G., Bambara R. A., Kunkel T. A. Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry. 1991 Dec 24;30(51):11751–11759. doi: 10.1021/bi00115a003. [DOI] [PubMed] [Google Scholar]
  39. Vrieling H., Venema J., van Rooyen M. L., van Hoffen A., Menichini P., Zdzienicka M. Z., Simons J. W., Mullenders L. H., van Zeeland A. A. Strand specificity for UV-induced DNA repair and mutations in the Chinese hamster HPRT gene. Nucleic Acids Res. 1991 May 11;19(9):2411–2415. doi: 10.1093/nar/19.9.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang T. S. Eukaryotic DNA polymerases. Annu Rev Biochem. 1991;60:513–552. doi: 10.1146/annurev.bi.60.070191.002501. [DOI] [PubMed] [Google Scholar]
  41. Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]
  42. Wintersberger U., Wintersberger E. Studies on deoxyribonucleic acid polymerases from yeast. 1. Parial purification and properties of two DNA polymerases from mitochondria-free cell extracts. Eur J Biochem. 1970 Mar 1;13(1):11–19. doi: 10.1111/j.1432-1033.1970.tb00893.x. [DOI] [PubMed] [Google Scholar]
  43. Wu C. I., Maeda N. Inequality in mutation rates of the two strands of DNA. Nature. 1987 May 14;327(6118):169–170. doi: 10.1038/327169a0. [DOI] [PubMed] [Google Scholar]
  44. Yates J. L., Warren N., Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. 1985 Feb 28-Mar 6Nature. 313(6005):812–815. doi: 10.1038/313812a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES