Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 2012 May;56(5):2493–2503. doi: 10.1128/AAC.06305-11

Comparative In Vitro Activities of LFF571 against Clostridium difficile and 630 Other Intestinal Strains of Aerobic and Anaerobic Bacteria

Diane M Citron a,, Kerin L Tyrrell a, C Vreni Merriam a, Ellie J C Goldstein a,b
PMCID: PMC3346664  PMID: 22290948

Abstract

The in vitro activities of LFF571, a novel analog of GE2270A that inhibits bacterial growth by binding with high affinity for protein synthesis elongation factor Tu, fidaxomicin, and 10 other antimicrobial agents were determined against 50 strains of Clostridium difficile and 630 other anaerobic and aerobic organisms of intestinal origin. LFF571 possesses potent activity against C. difficile and most other Gram-positive anaerobes (MIC90, ≤0.25 μg/ml), with the exception of bifidobacteria and lactobacilli. The MIC90s for aerobes, including enterococci, Staphylococcus aureus (as well as methicillin-resistant S. aureus [MRSA] isolates), Streptococcus pyogenes, and other streptococci were 0.06, 0.125, 2, and 8 μg/ml, respectively. Comparatively, fidaxomicin showed variable activity against Gram-positive organisms: MIC90s against C. difficile, Clostridium perfringens, and Bifidobacterium spp. were 0.5, ≤0.015, and 0.125 μg/ml, respectively, but >32 μg/ml against Clostridium ramosum and Clostridium innocuum. MIC90 for S. pyogenes and other streptococci was 16 and >32 μg/ml, respectively. LFF571 and fidaxomicin were generally less active against Gram-negative anaerobes.

INTRODUCTION

Toxigenic strains of Clostridium difficile are responsible for a spectrum of antibiotic-associated diarrheal diseases (C. difficile infection [CDI]) through elaboration of toxins A and B and other virulence factors (3, 9). In recent years, a hypervirulent strain (NAP-1, 027, BI) has emerged causing more severe disease and higher mortality, especially in more susceptible elderly patients. It is also seen increasingly in outpatients, including pregnant and postpartum women and people without previous antibiotic exposure (24, 25). Current antibiotic therapy for patients with CDI relies heavily on vancomycin or metronidazole, each of which has drawbacks, including treatment failure and frequent recurrence of disease. In addition, decreased susceptibility to metronidazole and vancomycin with emerging resistance to metronidazole (1, 2, 19) has potentiated the therapeutic dilemma. Only one new drug, fidaxomicin, has been developed during the past 30 years (17, 22). Therefore, there is an unmet need for other new drugs for this serious illness.

The current theory of CDI pathogenesis (15) is that the use of antimicrobials leads to unintended changes in the normal gastrointestinal microbiota that leave patients vulnerable to the effects of toxigenic C. difficile. Several strategies have emerged for the prevention and treatment of CDI, which include the use of probiotics (14), the restoration of the protective fecal microbiota (fecal biotherapy) (29), and the development of new agents that are less disruptive to the normal microbiota, especially the anaerobic component.

The thiopeptide LFF571 is a novel analog of the natural product GE2270 A, both of which inhibit bacterial growth by binding with high affinity for protein synthesis elongation factor Tu (10). GE2770 A has demonstrated excellent activity against a variety of Gram-positive organisms (16). In a study characterizing the mechanism of activity of LFF571, there was no evidence of inhibition of other biosynthetic pathways or disruption of bacterial membranes (20). LFF571 inhibits C. difficile in vitro and has proved more efficacious than vancomycin in an experimental hamster model of primary and relapsing C. difficile infection (26).

In order to fully assess LFF571's effect on fecal microbiota, we compared its in vitro activity with that of fidaxomicin, which has been shown to have a lesser effect on the levels of Bacteroides species and the gut microbiota than vancomycin and with 10 other antimicrobial agents against 50 strains of C. difficile and 630 other intestinal aerobic and anaerobic bacterial isolates representing 25 genera and 48 species.

MATERIALS AND METHODS

LFF571 was prepared by Novartis (Basel, Switzerland). Fidaxomicin (lipiarmycin A3) was prepared by fermentation of Catellatospora sp. Bp3323-81 at Novartis and supplied as a reference powder. Other laboratory reference powders were obtained from their manufacturer, USP or Sigma (St. Louis, MO), reconstituted according to the manufacturers' instructions, and stored at −70°C. On the day of testing, a tube of each stock solution was thawed and diluted according to the instructions in CLSI M7 and M11 documents (7, 8).

C. difficile strains were recovered from toxin-positive fecal specimens. The restriction endonuclease analysis (REA) groups included 16 BI, 6 Y, 4 J, 2 G, 2 CF, 1 BK, 1 Z, and 20 nonspecific strains. REA typing was conducted at Dale Gerding's laboratory using the method of Clabots (6). Other organisms representing 25 different genera and 48 species were cultured from clinical samples and identified by standard methods or by partial sequencing of the 16S rRNA gene and stored in 20% skim milk at −70°C (18, 23, 28). Strains were taken from the freezer and subcultured at least twice on supplemented brucella agar for anaerobes and on blood Trypticase soy agar for aerobes to ensure good growth. Anaerobes were incubated for 48 h and aerobes for 24 h prior to testing. Inocula were prepared by direct suspensions of cells into brucella broth for anaerobes or cation-adjusted Mueller-Hinton broth (CAMHB) for aerobes.

Quality control strains included Clostridium difficile ATCC 700057, Bacteroides fragilis ATCC 25285, Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, and Escherichia coli ATCC 25922 (for the comparator drugs).

For anaerobic organisms, supplemented brucella agar deeps were obtained from Anaerobe Systems (Morgan Hill, CA). Defibrinated sheep blood (Hardy Diagnostics, Santa Maria, CA) was frozen and thawed to produce laked blood. On the day of testing, laked blood and the antimicrobial agents were added to the tubes of molten agar before pouring the agar dilution plates. The strains were applied to the plates using a Steers multipronged inoculator for a final concentration of approximately 105 CFU/spot. After 44 h of incubation at 36°C in the anaerobic chamber incubator, the plates were examined for growth and the MICs interpreted (7).

MIC panels for testing aerobic organisms were prepared in-house using the Quick-Spense apparatus (Sandy Spring Instrument Co. Inc., Germantown, MD) at double antimicrobial strength, 50 μl/well, using CAMHB, and stored at −70°C until used. Tests for Streptococcus, Lactococcus, Leuconostoc, Pediococcus, and Aerococcus strains were supplemented with 2.5% lysed horse blood (LHB; Hardy Diagnostics) by adding 5% LHB to the inoculum tube and then adding 50 μl of inoculum to each well for a final concentration of ∼5× 105 CFU/ml. Panels were incubated for 20 h at 35°C before reading and interpreting the MICs (8).

RESULTS AND DISCUSSION

Table 1 summarizes and compares the activities of LFF571 and fidaxomicin against the major groups of organisms. Table 2 shows the ranges, MIC50/0.90, and percent resistance for all antimicrobial agents. Overall, LFF571 had excellent activity against the 50 C. difficile strains studied (MIC90, 0.25 μg/ml), which was one dilution lower than that of fidaxomicin (MIC90, 0.5 μg/ml) and three dilutions lower than both vancomycin and metronidazole (MIC90s, 2 μg/ml).

Table 1.

Summary of the in vitro activities (μg/ml) of LFF571 and fidaxomicin against diverse species of anaerobic and aerobic bacteriaa

Organism/group No. tested LFF571
Fidaxomicin
Range MIC50/90 Range MIC50/90
Gram-positive anaerobes
    C. difficile 50 0.125–0.5 0.25/0.25 0.03–0.5 0.25/0.5
    C. perfringens 20 ≤0.015–0.25 0.03/0.03 ≤0.015–0.03 <0.015/<0.015
    C. innocuum 20 0.125–0.25 0.125–0.25 >32 >32–>32
    C. ramosum 20 ≤0.015–0.03 ≤0.015/<0.015 >32 >32–>32
    Lactobacillus speciesb 24 0.06–>32 2/>32 ≤0.015–>32 8/32
    Bifidobacterium speciesc 22 >32 >32/>32 ≤0.015–0.125 0.06/0.125
    Eggerthella lenta 20 ≤0.015–0.06 0.03/0.06 ≤0.015–0.25 <0.015/0.125
    Eubacterium limosum 20 0.06–0.25 0.125/0.25 16–>32 32/>32
    Eubacterium groupd 28 ≤0.015–1 0.125/0.5 0.125–>32 2/>32
    Finegoldia magna 20 ≤0.015–0.25 0.125–0.125 0.5–2 1/2
    Parvimonas micra 20 ≤0.015–0.25 0.125–0.125 ≤0.015–2 0.06–0.06
    Peptostreptococcus anaerobius groupe 20 ≤0.03–0.06 0.06/0.06 ≤0.015–0.03 <0.015/<0.015
Gram-negative anaerobes
    B. fragilis 21 4–8 4/8 >32 >32/>32
    B. ovatus 20 4–>32 16/>32 >32 >32/>32
    B. thetaiotaomicron 20 4–>32 32/>32 >32 >32/>32
    B. vulgatus 20 4–>32 16/32 >32 >32/>32
    P. distasonis 20 4–>32 16/32 >32 >32/>32
    P. bivia 20 0.5–>32 4/>32 >32 >32/>32
    P. melaninogenica groupf 21 8–>32 >32–>32 >32 >32/>32
    Porphyromonas uenonis 20 0.06–0.25 0.125/0.25 8–>32 >32/>32
    Porphyromonas asaccharolytica 20 0.06–0.25 0.125/0.25 8–>32 32/>32
    Fusobacterium nucleatum 22 2–>32 16/32 0.125–>32 >32/>32
    F. mortiferum-varium groupg 20 >32 >32/>32 >32 >32/>32
    Veillonella species 20 >32 >32/>32 16–>32 32/>32
Aerobic organisms
    Aerococcus speciesh 10 0.06–1 0.5/1 0.5–16 2/2
    E. faecalis 22 ≤0.015–0.06 0.03/0.03 0.5–4 2/4
    E. faecium 20 ≤0.015–0.06 0.03/0.06 2–8 4/4
    S. pyogenes 21 0.5–4 1/2 4–16 8/8
    Streptococcus anginosus 21 1–16 2/8 4–>32 32/>32
    Streptococcus constellatus/intermediusi 26 1–32 2/8 4–>32 32/>32
    Staphylococcus aureus 20 0.125–0.25 0.125/0.125 4–8 8/8
    Unusual Gram-positive coccij 12 8–>32 32/>32 2–>32 >32/>32
a

Anaerobic organisms were tested by the agar dilution method; aerobic organisms were tested by broth microdilution (7, 8).

b

Lactobacillus antri (1), L. casei (6), L. catenaformis (4), L. crispatus (1), L. gasseri (4), L. reuteri (1), L. rhamnosus (6), and L. salivarius (1).

c

Bifidobacterium adolescentis (2), B. bifidum (4), B. breve (4), B. dentium (5), B. longum (5), and B. pseudocatenulatum (2).

d

Collinsella aerofaciens (6), Pseudoramibacter alactolyticus (8), Eubacterium cylindroides (1), Slackia exigua (5), Solobacterium moorei (5), Olsenella uli (2), and Eubacterium species (1).

e

Peptostreptococcus anaerobius (12), P. stomatis (8).

f

Prevotella melaninogenica (15), P. denticola (6).

g

Fusobacterium mortiferum (10), F. varium (10).

h

Aerococcus sanguinicola (2), A. viridans (8).

i

Streptococcus constellatus (16), S. intermedius (10).

j

Lactococcus sp. (3), Leuconostoc sp. (5), Pediococcus sp. (3), and Weissella cibaria (1).

Table 2.

In vitro activities (μg/ml) of LFF571 and comparator antimicrobial agents against C. difficile and other intestinal organismsa

Organism (no. tested)/antimicrobial agents MIC (μg/ml)
Percent resistant
Range 50% 90%
Gram-positive anaerobes
    Clostridium difficile (50)
        LFF571 0.125–0.5 0.25 0.25 NAk
        Fidaxomicin 0.03–0.5 0.25 0.5 NA
        Vancomycin 1–4 1 2 0
        Imipenem 4–16 8 16 18
        Piperacillin-tazobactam 2–16 8 16 0
        Ampicillin 1–2 2 2 0
        Ampicillin-sulbactam 0.5–2 2 2 0
        Cefoxitin >64 >64 >64 100
        Ceftriaxone 32–>64 64 64 50
        Metronidazole 0.25–4 1 2 0
        Clindamycin 1–>128 8 8 66
        Moxifloxacin 1–>32 2 16 26
    Clostridium perfringens (20)
        LFF571 ≤0.015–0.25 0.03 0.03 NA
        Fidaxomicin ≤0.015–0.03 ≤0.015 ≤0.015 NA
        Vancomycin 0.5–1 0.5 1 0
        Imipenem 0.06–0.5 0.125 0.5 0
        Piperacillin-tazobactam ≤0.06–1 ≤0.06 0.5 0
        Ampicillin ≤0.06–1 0.125 0.5 0
        Ampicillin-sulbactam ≤0.06–1 0.125 0.5 0
        Cefoxitin 0.5–2 1 2 0
        Ceftriaxone ≤0.06–4 0.25 1 0
        Metronidazole 0.5–2 1 2 0
        Clindamycin ≤0.06–2 1 2 0
        Moxifloxacin 0.25–8 0.5 0.5 5
    Clostridium innocuum (20)
        LFF571 0.125–0.25 0.125 0.25 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin 4–16 16 16 55
        Imipenem 1–8 4 8 0
        Piperacillin-tazobactam 0.5–4 1 2 0
        Ampicillin ≤0.06–1 0.25 1 0
        Ampicillin-sulbactam ≤0.06–1 0.25 1 0
        Cefoxitin 64–>64 >64 >64 100
        Ceftriaxone 8–32 16 32 0
        Metronidazole 0.125–2 1 1 0
        Clindamycin 0.125–>128 1 >128 15
        Moxifloxacin 1–>32 2 8 20
    Clostridium ramosum (20)
        LFF571 ≤0.015–0.03 ≤0.015 ≤0.015 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin 2–4 4 4 0
        Imipenem 0.25–1 1 1 0
        Piperacillin-tazobactam ≤0.06–2 0.125 0.25 0
        Ampicillin 0.125–2 0.25 1 0
        Ampicillin-sulbactam 0.125–2 0.5 1 0
        Cefoxitin 1–>64 16 16 5
        Ceftriaxone 0.25–0.5 0.25 0.5 0
        Metronidazole 0.25–1 0.5 1 0
        Clindamycin 2–>128 4 8 10
        Moxifloxacin 1–16 4 4 5
    Lactobacillus speciesb (24)
        LFF571 0.06–>32 2 >32 NA
        Fidaxomicin ≤0.015 > 32 8 32 NA
        Vancomycin ≤0.25–>64 >64 >64 63
        Imipenem ≤0.25–4 <0.25 2 0
        Piperacillin-tazobactam ≤0.06–16 1 4 0
        Ampicillin ≤0.06–4 0.5 2 0
        Ampicillin-sulbactam ≤0.06–4 0.5 2 0
        Cefoxitin 0.25–>32 >32 >32 67
        Ceftriaxone ≤0.06–>32 8 >32 50
        Metronidazole 0.125–>64 >64 >64 83
        Clindamycin ≤0.06–4 0.125 2 0
        Moxifloxacin 0.125–8 0.25 1 4
    Bifidobacterium speciesc (22)
        LFF571 >32 >32 >32 NA
        Fidaxomicin ≤0.015–0.125 0.06 0.125 NA
        Vancomycin 0.25–1 0.5 1 0
        Imipenem ≤0.03–0.25 ≤0.03 0.25 0
        Piperacillin-tazobactam ≤0.06–1 ≤0.06 0.125 0
        Ampicillin ≤0.06–1 ≤0.06 0.25 0
        Ampicillin-sulbactam ≤0.06–1 ≤0.06 0.125 0
        Cefoxitin ≤0.06–32 1 4 0
        Ceftriaxone ≤0.06–4 0.125 0.5 0
        Metronidazole 1–>64 8 >64 36
        Clindamycin ≤0.06–0.125 ≤0.06 ≤0.06 0
        Moxifloxacin 0.25–8 0.5 1 5
    Eggerthella lenta (20)
        LFF571 ≤0.015–0.06 0.03 0.06 NA
        Fidaxomicin ≤0.015–0.25 ≤0.015 0.125 NA
        Vancomycin 0.5–2 2 2 0
        Imipenem ≤0.03–1 1 1 0
        Piperacillin-tazobactam 0.5–32 16 32 0
        Ampicillin 0.5–8 4 4 75
        Ampicillin-sulbactam 0.5–8 4 4 80
        Cefoxitin 8–32 16 16 0
        Ceftriaxone 0.5–>64 >64 >64 95
        Metronidazole 0.25–1 0.5 0.5 0
        Clindamycin ≤0.06–0.5 0.25 0.5 0
        Moxifloxacin 0.125–8 0.5 2 5
    Eubacterium limosum (20)
        LFF571 0.06–0.25 0.125 0.25 NA
        Fidaxomicin 16–>32 32 >32 NA
        Vancomycin 2–4 2 2 0
        Imipenem 0.06–0.125 0.06 0.06 0
        Piperacillin-tazobactam ≤0.06–0.5 0.25 0.5 0
        Ampicillin 0.125–0.25 0.25 0.25 0
        Ampicillin-sulbactam ≤0.06–0.5 0.25 0.5 0
        Cefoxitin 0.5–4 1 4 0
        Ceftriaxone ≤0.06–1 0.5 1 0
        Metronidazole 0.125–1 0.25 1 0
        Clindamycin ≤0.06–64 1 2 7
        Moxifloxacin 1–2 1 2 0
    Eubacterium groupd (28)
        LFF571 ≤0.015–1 0.125 0.5 NA
        Fidaxomicin 0.125–>32 2 >32 NA
        Vancomycin 0.25–4 0.5 1 0
        Imipenem ≤0.03–0.5 ≤0.03 0.06 0
        Piperacillin-tazobactam ≤0.06–2 0.25 1 0
        Ampicillin ≤0.06–1 ≤0.06 0.5 0
        Ampicillin-sulbactam ≤0.06-1 0.125 1 0
        Cefoxitin ≤0.06–16 4 16 0
        Ceftriaxone ≤0.06–8 0.5 4 0
        Metronidazole ≤0.06–2 0.5 2 0
        Clindamycin ≤0.06–>128 ≤0.06 1 4
        Moxifloxacin 0.125–1 0.25 1 0
    Finegoldia magna (20)
        LFF571 ≤0.015–0.25 0.125 0.125 NA
        Fidaxomicin 0.5–2 1 2 NA
        Vancomycin 0.125–1 0.25 0.5 0
        Imipenem ≤0.03–0.25 0.06 0.125 0
        Piperacillin-tazobactam ≤0.06–1 0.125 0.25 0
        Ampicillin ≤0.06–0.5 0.25 0.5 0
        Ampicillin-sulbactam ≤0.06–0.5 0.25 0.25 0
        Cefoxitin ≤0.06–1 0.5 1 0
        Ceftriaxone 0.125–16 4 8 0
        Metronidazole ≤0.06–2 0.5 1 0
        Clindamycin ≤0.06–>128 0.5 >128 25
        Moxifloxacin 0.06–16 2 4 5
    Parvimonas micra (20)
        LFF571 ≤0.015–0.25 0.125 0.125 NA
        Fidaxomicin ≤0.015–2 0.06 0.06 NA
        Vancomycin 0.5–1 1 1 0
        Imipenem ≤0.03–0.25 ≤0.03 0.06 0
        Piperacillin-tazobactam ≤0.06–1 ≤0.06 0.125 0
        Ampicillin ≤0.06–2 0.125 1 0
        Ampicillin-sulbactam ≤0.06–1 0.125 0.5 0
        Cefoxitin 0.5–8 1 2 0
        Ceftriaxone 0.125–2 0.25 1 0
        Metronidazole 0.125–1 0.25 0.5 0
        Clindamycin ≤0.06–32 0.25 16 15
        Moxifloxacin 0.125–32 0.25 16 15
    P. anaerobius/stomatis groupe (20)
        LFF571 ≤0.015–0.06 0.06 0.06 NA
        Fidaxomicin ≤0.015–0.03 ≤0.015 ≤0.015 NA
        Vancomycin 0.125–0.5 0.25 0.5 0
        Imipenem ≤0.03–2 0.06 1 0
        Piperacillin-tazobactam 0.25–16 0.25 16 0
        Ampicillin ≤0.06–32 0.125 8 20
        Ampicillin-sulbactam ≤0.06–32 0.125 16 20
        Cefoxitin 0.25–16 0.5 16 0
        Ceftriaxone 0.5–16 2 16 0
        Metronidazole ≤0.06–1 0.25 1 0
        Clindamycin ≤0.06–0.5 ≤0.06 0.25 0
        Moxifloxacin 0.125–8 0.125 0.25 0
Gram-negative anaerobes
    Bacteroides fragilis (21)
        LFF571 4–8 4 8 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin 32–>32 32 32 100
        Imipenem ≤0.03–>32 0.06 4 5
        Piperacillin-tazobactam 0.25–>64 1 64 10
        Ampicillin 16–>64 32 >64 100
        Ampicillin-sulbactam 1–>64 2 32 19
        Cefoxitin 8–>64 16 32 10
        Ceftriaxone 4–>64 64 >64 62
        Metronidazole 0.25–>64 1 1 5
        Clindamycin ≤0.06–>128 0.5 >128 14
        Moxifloxacin 0.5–8 1 8 38
    B. ovatus (20)
        LFF571 4–>32 16 >32 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin >32 >32 >32 100
        Imipenem 0.06–2 0.125 0.25 0
        Piperacillin-tazobactam 2–>64 4 16 5
        Ampicillin 8–>64 32 >64 100
        Ampicillin-sulbactam 0.5–32 1 8 5
        Cefoxitin 8–>64 32 32 10
        Ceftriaxone 4–>64 >64 >64 95
        Metronidazole 0.25–2 1 1 0
        Clindamycin 1–>128 2 >128 25
        Moxifloxacin 1–>32 2 32 20
    B. thetaiotaomicron (20)
        LFF571 4–>32 >32 >32 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin 32–>32 >32 >32 100
        Imipenem 0.125–2 0.25 0.5 0
        Piperacillin-tazobactam 8–>64 16 32 5
        Ampicillin 16–>64 >32 >64 100
        Ampicillin-sulbactam 1–16 2 8 0
        Cefoxitin 16–>64 32 64 5
        Ceftriaxone >64 >64 >64 100
        Metronidazole 0.5–2 1 2 0
        Clindamycin 0.5–>128 4 >128 45
        Moxifloxacin 1–>32 2 32 20
    B. vulgatus (20)
        LFF571 4–>32 16 >32 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin 16–>32 32 >32 100
        Imipenem 0.06–8 0.25 1 0
        Piperacillin-tazobactam ≤0.06–32 4 16 0
        Ampicillin 4–>64 >64 >64 100
        Ampicillin-sulbactam 1–32 8 16 5
        Cefoxitin 4–>64 8 32 5
        Ceftriaxone 1–>64 64 >64 50
        Metronidazole 0.25–4 0.5 1 0
        Clindamycin ≤0.06–>128 1 >128 45
        Moxifloxacin 0.5–>32 1 32 45
    Parabacteroides distasonis (20)
        LFF571 4–>32 16 32 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin 32–>32 >32 >32 100
        Imipenem 0.125–1 0.5 0.5 0
        Piperacillin-tazobactam 2–32 4 32 0
        Ampicillin 2–>64 4 >64 100
        Ampicillin-sulbactam 2–32 4 32 15
        Cefoxitin 8–64 16 32 10
        Ceftriaxone 0.25–>64 8 >64 45
        Metronidazole 0.5–8 2 4 0
        Clindamycin ≤0.06–>128 4 >128 45
        Moxifloxacin 0.125–32 0.5 16 30
    Prevotella bivia (20)
        LFF571 0.5–>32 4 >32 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin >64 >64 >64 100
        Imipenem ≤0.03–0.06 ≤0.03 0.06 0
        Piperacillin-tazobactam ≤0.06 ≤0.06 ≤0.06 0
        Ampicillin ≤0.06–>64 8 32 60
        Ampicillin-sulbactam ≤0.06–4 1 2 0
        Cefoxitin 0.25–2 0.5 1 0
        Ceftriaxone ≤0.06–64 8 32 10
        Metronidazole 0.25–4 1 4 0
        Clindamycin ≤0.06–>128 ≤0.06 >128 30
        Moxifloxacin 1–>32 2 32 15
    P. melaninogenica groupf (21)
        LFF571 8–>32 >32 >32 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin >64 >64 >64 100
        Imipenem ≤0.03–0.06 ≤0.03 0.06 0
        Piperacillin-tazobactam ≤0.06–0.125 ≤0.06 ≤0.06 0
        Ampicillin ≤0.06–64 1 32 38
        Ampicillin-sulbactam ≤0.06–2 0.25 2 0
        Cefoxitin ≤0.06–4 0.5 2 0
        Ceftriaxone ≤0.06–64 2 64 14
        Metronidazole ≤0.06–2 0.25 1 0
        Clindamycin ≤0.06–>128 ≤0.06 ≤0.06 10
        Moxifloxacin 0.5–32 0.5 32 19
    Porphyromonas asaccharolytica (20)
        LFF571 0.06–0.25 0.125 0.25 NA
        Fidaxomicin 8–>32 >32 >32 NA
        Vancomycin 0.5–2 1 2 0
        Imipenem ≤0.03 ≤0.03 ≤0.03 0
        Piperacillin-tazobactam ≤0.06–0.125 ≤0.06 ≤0.06 0
        Ampicillin ≤0.06–0.25 ≤0.06 ≤0.06 0
        Ampicillin-sulbactam ≤0.06 ≤0.06 ≤0.06 0
        Cefoxitin ≤0.06–0.5 0.125 0.25 0
        Ceftriaxone ≤0.06–0.25 ≤0.06 ≤0.06 0
        Metronidazole ≤0.06–0.125 ≤0.06 ≤0.06 0
        Clindamycin ≤0.06–64 ≤0.06 64 25
        Moxifloxacin 0.125–8 0.25 1 5
    P. uenonis (20)
        LFF571 0.06–0.25 0.125 0.25 NA
        Fidaxomicin 8–>32 >32 >32 NA
        Vancomycin 0.5–4 2 2 0
        Imipenem ≤0.03 ≤0.03 ≤0.03 0
        Piperacillin-tazobactam ≤0.06 ≤0.06 ≤0.06 0
        Ampicillin ≤0.06–2 ≤0.06 ≤0.06 5
        Ampicillin-sulbactam ≤0.06–0.25 ≤0.06 ≤0.06 0
        Cefoxitin ≤0.06–2 0.125 0.25 0
        Ceftriaxone ≤0.06–8 ≤0.06 0.25 0
        Metronidazole ≤0.06 ≤0.06 ≤0.06 0
        Clindamycin ≤0.06 ≤0.06 ≤0.06 0
        Moxifloxacin 0.125–0.5 0.5 0.5 0
    Fusobacterium nucleatum (22)
        LFF571 2–>32 16 32 NA
        Fidaxomicin 0.125–>32 >32 >32 NA
        Vancomycin 32–>32 >32 >32 100
        Imipenem ≤0.03–≤0.03 ≤0.03 ≤0.03 0
        Piperacillin-tazobactam ≤0.06 ≤0.06 ≤0.06 0
        Ampicillin ≤0.06 ≤0.06 ≤0.06 0
        Ampicillin-sulbactam ≤0.06 ≤0.06 ≤0.06 0
        Cefoxitin ≤0.06–0.25 0.125 0.25 0
        Ceftriaxone ≤0.06–0.125 ≤0.06 0.125 0
        Metronidazole ≤0.06–1 ≤0.06 0.5 0
        Clindamycin ≤0.06–0.25 ≤0.06 0.125 0
        Moxifloxacin ≤0.06–16 0.125 2 11
    F. mortiferum/varium groupg (20)
        LFF571 >32 >32 >32 NA
        Fidaxomicin >32 >32 >32 NA
        Vancomycin >32 >32 >32 100
        Imipenem 0.06–1 1 1 0
        Piperacillin-tazobactam 0.125–4 0.25 4 0
        Ampicillin 0.125–4 1 4 25
        Ampicillin-sulbactam 0.125–4 1 4 0
        Cefoxitin 0.25–8 4 8 0
        Ceftriaxone ≤0.06–>64 16 >64 50
        Metronidazole ≤0.06–2 1 2 0
        Clindamycin ≤0.06–32 0.125 4 5
        Moxifloxacin 0.5–>32 0.5 16 20
    Veillonella species (20)
        LFF571 >32 >32 >32 NA
        Fidaxomicin 16–>32 32 >32 NA
        Vancomycin 64–>64 >64 >64 100
        Imipenem 0.06–1 0.5 1 0
        Piperacillin-tazobactam 4–>64 64 >64 35
        Ampicillin 0.25–2 0.5 2 25
        Ampicillin-sulbactam 0.125–2 0.5 2 0
        Cefoxitin 0.5–16 4 16 0
        Ceftriaxone 0.25–8 4 8 0
        Metronidazole 0.25–8 2 4 0
        Clindamycin ≤0.06–128 ≤0.06 0.25 5
        Moxifloxacin 0.06–>32 0.5 4 10
Gram-positive aerobes
    Aerococcus speciesh (10)
        LFF571 0.06–1 0.5 1 NA
        Fidaxomicin 0.5–16 2 2 NA
        Vancomycin ≤0.25–0.5 ≤0.25 ≤0.25 100
        Imipenem ≤0.25–<0.25 ≤0.25 ≤0.25 100
        Piperacillin-tazobactam ≤0.25–4 2 4 100
        Ampicillin ≤0.125–<0.125 ≤0.125 ≤0.125 100
        Ampicillin-sulbactam ≤0.125–<0.125 ≤0.125 ≤0.125 100
        Cefoxitin ≤0.25–32 4 16 100
        Ceftriaxone ≤0.25–8 2 8 100
        Clindamycin ≤0.125–0.5 ≤0.125 0.25 100
        Moxifloxacin ≤0.06–>8 0.25 0.5 100
    Enterococcus faecalis (22)
        LFF571 ≤0.015–0.06 0.03 0.03 NA
        Fidaxomicin 0.5–4 2 4 NA
        Vancomycin 0.5–>16 >16 >16 64
        Imipenem 0.5–16 2 16 0
        Piperacillin-tazobactam 2–16 8 16 0
        Ampicillin 0.25–4 1 4 0
        Ampicillin-sulbactam 0.25–4 1 4 0
        Cefoxitin >32 >32 >32 100
        Ceftriaxone >32 >32 >32 100
        Clindamycin 2–>16 >16 >16 NA
        Moxifloxacin 0.125–>8 4 8 27
    Enterococcus faecium (20)
        LFF571 ≤0.015–0.06 0.03 0.06 NA
        Fidaxomicin 2–8 4 4 NA
        Vancomycin 0.5–>16 >16 >16 90
        Imipenem >32 >32 >32 100
        Piperacillin-tazobactam >32 >32 >32 100
        Ampicillin 16–>16 >16 >16 100
        Ampicillin-sulbactam 16–>16 >16 >16 100
        Cefoxitin >32 >32 >32 100
        Ceftriaxone >32 >32 >32 100
        Clindamycin 0.25–>16 >16 >16 NA
        Moxifloxacin 2–>8 >8 >8 75
    Streptococcus pyogenes (21)
        LFF571 0.5–4 1 2 NA
        Fidaxomicin 4–16 8 8 NA
        Vancomycin ≤0.25 ≤0.25 ≤0.25 0
        Imipenem ≤0.25 ≤0.25 ≤0.25 0
        Piperacillin-tazobactam ≤0.25 ≤0.25 ≤0.25 0
        Ampicillin ≤0.125 ≤0.125 ≤0.125 0
        Ampicillin-sulbactam ≤0.125 ≤0.125 ≤0.125 0
        Cefoxitin ≤0.25–2 1 1 0
        Ceftriaxone ≤0.25 ≤0.25 ≤0.25 0
        Clindamycin ≤0.125–1 ≤0.125 ≤0.25 0
        Moxifloxacin ≤0.06–0.25 0.125 0.25 0
    S. anginosus (22)
        LFF571 1–16 2 8 NA
        Fidaxomicin 4–>32 32. >32 NA
        Vancomycin ≤0.25–1 0.5 0.5 0
        Imipenem ≤0.25 ≤0.25 ≤0.25 0
        Piperacillin-tazobactam ≤0.25 ≤0.25 ≤0.25 0
        Ampicillin ≤0.125 ≤0.125 ≤0.125 0
        Ampicillin-sulbactam ≤0.125 ≤0.125 ≤0.125 0
        Cefoxitin 2–8 4 8 0
        Ceftriaxone ≤0.25–0.5 ≤0.25 ≤0.25 0
        Clindamycin ≤0.125–>16 ≤0.125 >16 15
        Moxifloxacin ≤0.06–0.5 0.125 0.25 0
    S. constellatus/intermediusi (26)
        LFF571 1–32 2 8 NA
        Fidaxomicin 4–>32 32 >32 NA
        Vancomycin ≤0.25–1 0.5 0.5 0
        Imipenem ≤0.25 ≤0.25 ≤0.25 0
        Piperacillin-tazobactam ≤0.25–0.5 ≤0.25 0.5 0
        Ampicillin ≤0.125–4 ≤0.125 2 0
        Ampicillin-sulbactam ≤0.125–0.25 ≤0.125 ≤0.25 0
        Cefoxitin ≤0.25–16 4 8 0
        Ceftriaxone ≤0.25–0.5 ≤0.25 0.5 0
        Clindamycin ≤0.125–>16 ≤0.125 0.5 5
        Moxifloxacin ≤0.06–0.5 0.125 0.25 0
    Staphylococcus aureus (20)
        LFF571 0.125–0.25 0.125 0.125 NA
        Fidaxomicin 4–8 8 8 NA
        Vancomycin 0.5–1 0.5 1 0
        Imipenem ≤0.25–4 ≤0.25 2 0
        Piperacillin-tazobactam 1–>32 32 >32 55
        Ampicillin 0.25–>16 16 >16 95
        Ampicillin-sulbactam 0.25–16 2 16 0
        Cefoxitin 4–>32 16 >32 50
        Ceftriaxone 2–>32 32 >32 55
        Clindamycin ≤0.125–>16 ≤0.125 0.25 10
        Moxifloxacin ≤0.06–>8 0.125 4 10
    Unusual Gram-positive coccij (12)
        LFF571 8–>32 32 >32 NA
        Fidaxomicin 2–>32 >32 >32 NA
        Vancomycin 0.5–>16 >16 >16 75
        Imipenem ≤0.25–4 ≤0.25 4 0
        Piperacillin-tazobactam 2–8 2 4 0
        Ampicillin ≤0.125–2 0.25 1 0
        Ampicillin-sulbactam ≤0.125–2 0.25 1 0
        Cefoxitin >32 >32 >32 100
        Ceftriaxone ≤0.25–>32 32 >32 58
        Clindamycin ≤0.125–0.25 ≤0.125 0.25 0
        Moxifloxacin 0.25–2 0.5 2 0
a

Anaerobic organisms were tested by the agar dilution method; aerobic organisms were tested by broth microdilution (7, 8).

b

Lactobacillus antri (1), L. casei (6), L. catenaformis (4), L. crispatus (1), L. gasseri (4), L. reuteri (1), L. rhamnosus (6), and L. salivarius (1).

c

Bifidobacterium adolescentis (2), B. bifidum (4), B. breve (4), B. dentium (5), B. longum (5), and B. pseudocatenulatum (2).

d

Collinsella aerofaciens (6), Pseudoramibacter alactolyticus (8), Eubacterium cylindroides (1), Slackia exigua (5), Solobacterium moorei (5), Olsenella uli (2), and Eubacterium species (1).

e

Peptostreptococcus anaerobius (12), P. stomatis (8).

f

Prevotella melaninogenica (15), P. denticola (6).

g

Fusobacterium mortiferum (10), F. varium (10).

h

Aerococcus sanguinicola (2), A. viridans (8).

i

Streptococcus constellatus (16), S. intermedius (10).

j

Lactococcus sp. (3), Leuconostoc sp. (5), Pediococcus sp. (3), and Weissella cibaria (1).

k

NA, not available.

LFF571 demonstrated consistently excellent activity against all anaerobic Gram-positive rods and cocci (MIC50/90, 0.125/0.25 μg/ml for 284 strains), with the exception of bifidobacteria and some species of lactobacilli. Activity against lactobacilli was species dependent with all strains of Lactobacillus catenaformis susceptible to ≤0.125 μg/ml, while MICs for the other species ranged from 2 to 16 μg/ml for the vancomycin-resistant Lactobacillus casei-rhamnosus group but >32 μg/ml for the vancomycin-susceptible Lactobacillus gasseri strains. Against the Gram-negative anaerobes, the 40 strains of Porphyromonas spp. were susceptible to ≤0.25 μg/ml of LFF571, similar to their relatively unusual susceptibility to vancomycin (MIC 0.5 to 4 μg/ml). MICs for Bacteroides fragilis were 4 and 8 μg/ml, although the other species in the B. fragilis group, including Bacteroides thetaiotaomicron, Bacteroides ovatus, and Parabacteroides (Bacteroides) distasonis, were less susceptible, with an overall MIC90 of >32 μg/ml. There was no apparent difference in the range of MICs for the individual Bacteroides species. Similarly, Prevotella bivia, Prevotella melaninogenica/denticola, and Veillonella spp. also displayed MIC90 of >32 μg/ml, although some of the P. bivia strains had MICs as low as 0.5 μg/ml. Similar to fidaxomicin, the relatively poor activity against Gram-negative anaerobes suggests that LFF571 might have a lesser impact on the normal gut microbiota that maintain colonization resistance (21, 27).

Fidaxomicin results for the Gram-positive organisms were more variable. While activity against C. difficile and Clostridium perfringens was excellent (MIC90, 0.5 and ≤0.015 μg/ml, respectively), MICs for Clostridium ramosum and Clostridium innocuum were all >32 μg/ml. Unlike LFF571, fidaxomicin inhibited all strains of Bifidobacterium species with MIC90 at 0.125 μg/ml, but similar to LFF571, activity against lactobacilli was species dependent. While Eggerthella lenta strains were inhibited by ≤0.25 μg/ml of fidaxomicin, Eubacterium limosum strains required 16 to >32 μg/ml for inhibition. All anaerobic Gram-positive coccus strains were very susceptible with fidaxomicin MICs ranging from ≤0.015 to 2 μg/ml. Against the anaerobic Gram-negative organisms, fidaxomicin showed poor activity with MIC50/90 of 32/>32 μg/ml for all strains, including Veillonella spp.

Among the aerobic strains, LFF571 was most active against vancomycin-resistant and -susceptible strains of Enterococcus faecalis and Enterococcus faecium with MIC90 at 0.03 and 0.06 μg/ml, respectively. It was equally active against methicillin-susceptible and -resistant strains of staphylococci with MIC90 of 0.125 μg/ml. Against the streptococci, LFF571 was slightly less active: the MIC90 for Streptococcus pyogenes was 2 μg/ml and for the S. milleri group, 8 μg/ml. Aerococcus strains were inhibited by 0.06 to 1 μg/ml, although other unusual cocci such as Lactococcus, Leuconostoc, Pediococcus, and Weissella were less susceptible with MICs ranging from 8 to >32 μg/ml. There was no relationship in resistance by other classes of antimicrobial agents and LFF571. Fidaxomicin was less active than LFF571 against the aerobic strains. The MIC90 against enterococci was 4 μg/ml, with no apparent difference between vancomycin-resistant and -susceptible strains. The MIC90 for Aerococcus species was 2 μg/ml, for S. pyogenes, 16 μg/ml, and for the S. milleri group, >32 μg/ml.

Susceptibilities for the comparator agents were typical for what has been reported in other surveys of anaerobic intestinal organisms (4, 5, 12, 13, 11). C. difficile resistance to cefoxitin, imipenem, clindamycin, and moxifloxacin was present in 100, 18, 66, and 26% of our isolates, respectively, while elevated MICs of 4 μg/ml were found in two strains for vancomycin and in one for metronidazole. Moxifloxacin resistance was present in 10 of 14 (71%) REA-BI (027, NAP1) strains, 1 of 4 type J, the single type Z strain, and 4 of 20 (20%) nonspecific type strains. All strains of C. innocuum were also resistant to cefoxitin and 55% to vancomycin. Eggerthella lenta displayed resistance to ampicillin (75%) and ceftriaxone (95%) while the other nonsporeforming Gram-positive rods were mostly susceptible to these drugs. Among the Gram-positive cocci, 25% of Finegoldia magna and 15% of Parvimonas micra strains were resistant to clindamycin while 5% and 15%, respectively, were also resistant to moxifloxacin. Ampicillin resistance was present in 4 of 12 (33%) Peptostreptococcus anaerobius strains, although all of the phenotypically similar Peptostreptococcus stomatis strains were susceptible.

Through a novel mechanism, LFF571 shows excellent activity against C. difficile and good activity against other Gram-positive anaerobes but little activity against the anaerobic Gram-negative organisms. All strains of enterococci, regardless of vancomycin susceptibility, were inhibited. With this relatively narrow spectrum of activity, LFF571 shows promise as a new drug for treating CDI. It is currently in phase II clinical trials.

ACKNOWLEDGMENTS

This study was sponsored by a grant from Novartis Pharmaceuticals.

We thank Eliza Leoncio for excellent technical assistance.

Footnotes

Published ahead of print 30 January 2012

REFERENCES

  • 1. Al-Nassir WN, et al. 2008. Comparison of clinical and microbiological response to treatment of Clostridium difficile-associated disease with metronidazole and vancomycin. Clin. Infect. Dis. 47:56–62 [DOI] [PubMed] [Google Scholar]
  • 2. Baines SD, et al. 2008. Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J. Antimicrob. Chemother. 62:1046–1052 [DOI] [PubMed] [Google Scholar]
  • 3. Carroll KC, Bartlett JG. 2011. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu. Rev. Microbiol. 65:501–521 [DOI] [PubMed] [Google Scholar]
  • 4. Citron DM, et al. 2003. In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. Antimicrob. Agents Chemother. 47:2334–2338 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Citron DM, Warren YA, Tyrrell KL, Merriam V, Goldstein EJ. 2009. Comparative in vitro activity of REP3123 against Clostridium difficile and other anaerobic intestinal bacteria. J. Antimicrob. Chemother. 63:972–976 [DOI] [PubMed] [Google Scholar]
  • 6. Clabots CR, et al. 1993. Development of a rapid and efficient restriction endonuclease analysis typing system for Clostridium difficile and correlation with other typing systems. J. Clin. Microbiol. 31:1870–1875 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Clinical and Laboratory Standards Institute 2007. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard, 7th ed CLSI document M11-A7 Clinical and Laboratory Standards Institute, Wayne, PA [Google Scholar]
  • 8. Clinical and Laboratory Standards Institute 2009. Methods for dilution antimicrobial susceptibility testing of bacteria that grow aerobically. Approved standard, 8th ed CLSI document M7-A8 Clinical and Laboratory Standards Institute, Wayne, PA [Google Scholar]
  • 9. Deneve C, Janoir C, Poilane I, Fantinato C, Collignon A. 2009. New trends in Clostridium difficile virulence and pathogenesis. Int. J. Antimicrob. Agents 33(Suppl 1):S24–S28 [DOI] [PubMed] [Google Scholar]
  • 10. Deng G, et al. 2011. Investigation of mode of binding of elongation factor Tu inhibitor, LFF571. 51st Intersci. Conf. Antimicrob. Agents Chemother., abstr F1-1859 [Google Scholar]
  • 11. Dzink-Fox JL, et al. 2011. Antimicrobial activity of the novel elongation factor Tu inhibitor, LFF571. 51st Intersci. Conf. Antimicrob. Agents Chemother., abstr F1-1346 [Google Scholar]
  • 12. Finegold SM, et al. 2004. In vitro activity of ramoplanin and comparator drugs against anaerobic intestinal bacteria from the perspective of potential utility in pathology involving bowel flora. Anaerobe 10:205–211 [DOI] [PubMed] [Google Scholar]
  • 13. Finegold SM, et al. 2004. In vitro activities of OPT-80 and comparator drugs against intestinal bacteria. Antimicrob. Agents Chemother. 48:4898–4902 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Gao XW, Mubasher M, Fang CY, Reifer C, Miller LE. 2010. Dose-response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adult patients. Am. J. Gastroenterol. 105:1636–1641 [DOI] [PubMed] [Google Scholar]
  • 15. Gerding DN, Johnson S. 2010. Management of Clostridium difficile infection: thinking inside and outside the box. Clin. Infect. Dis. 51:1306–1313 [DOI] [PubMed] [Google Scholar]
  • 16. Goldstein BP, et al. 1993. In vitro antimicrobial activity of a new antibiotic, MDL 62,879 (GE2270 A). Antimicrob. Agents Chemother. 37:741–745 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Goldstein EJ, et al. 2011. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob. Agents Chemother. 55:5194–5199 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Jousimies-Somer HR, et al. 2002. Wadsworth-KTL anaerobic bacteriology manual. Star Publishing, Belmont, CA [Google Scholar]
  • 19. Kuijper EJ, Wilcox MH. 2008. Decreased effectiveness of metronidazole for the treatment of Clostridium difficile infection? Clin. Infect. Dis. 47:63–65 [DOI] [PubMed] [Google Scholar]
  • 20. Leeds JA, et al. 2011. Antibacterial mechanism of action of LFF571. 51st Intersci. Conf. Antimicrob. Agents Chemother., abstr F1-1347 [Google Scholar]
  • 21. Louie TJ, Emery J, Krulicki W, Byrne B, Mah M. 2009. OPT-80 eliminates Clostridium difficile and is sparing of Bacteroides species during treatment of C. difficile infection. Antimicrob. Agents Chemother. 53:261–263 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Miller M. 2010. Fidaxomicin (OPT-80) for the treatment of Clostridium difficile infection. Expert Opin. Pharmacother. 11:1569–1578 [DOI] [PubMed] [Google Scholar]
  • 23. Murray PR, Baron EJ. 2007. Manual of clinical microbiology. ASM Press, Washington, DC [Google Scholar]
  • 24. Rouphael NG, et al. 2008. Clostridium difficile-associated diarrhea: an emerging threat to pregnant women. Am. J. Obstet. Gynecol. 198:635–636 [DOI] [PubMed] [Google Scholar]
  • 25. Rupnik M, Wilcox MH, Gerding DN. 2009. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7:526–536 [DOI] [PubMed] [Google Scholar]
  • 26. Trzasko A, et al. 2011. Efficacy of LFF571: a novel semi-synthetic thiopeptide in a hamster model of C. difficile infection. 51st Intersci. Conf. Antimicrob. Agents Chemother., abstr B-1189 [Google Scholar]
  • 27. Vollaard EJ, Clasener HA. 1994. Colonization resistance. Antimicrob. Agents Chemother. 38:409–414 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Warren YA, Tyrrell KL, Citron DM, Goldstein EJ. 2006. Clostridium aldenense sp. nov. and Clostridium citroniae sp. nov. isolated from human clinical infections. J. Clin. Microbiol. 44:2416–2422 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Yoon SS, Brandt LJ. 2010. Treatment of refractory/recurrent C. difficile-associated disease by donated stool transplanted via colonoscopy: a case series of 12 patients. J. Clin. Gastroenterol. 44:562–566 [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES