Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1988 Feb 11;16(3):849–864. doi: 10.1093/nar/16.3.849

Grapevine yellow speckle viroid: structural features of a new viroid group.

A M Koltunow 1, M A Rezaian 1
PMCID: PMC334723  PMID: 3344221

Abstract

A single stranded circular RNA was isolated from grapevines infected with yellow speckle disease. The RNA which we have called grapevine yellow speckle viroid (GYSV), contains 367 nucleotide residues and has the potential to form the rod-like secondary structure characteristic of viroids. GYSV has 37% sequence homology with the recently described apple scar skin viroid (ASSV; 330 residues) and has some sequence homology with the viroids in the potato spindle tuber viroid (PSTV) group. The sequence of GYSV has characteristics which fit the structural domains described for the PSTV group. However, GYSV lacks the PSTV central conserved sequence. Instead, there is a conserved sequence in the central region of GYSV and ASSV which has the potential to form a stem loop configuration and a stable palindromic structure as does the central conserved region of the PSTV group. These structural features suggest there is a different central conserved region for GYSV and ASSV. The results support the viroid nature of GYSV and its inclusion into a separate viroid group which we suggest should be represented by ASSV.

Full text

PDF
849

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bucholtz C. A., Reisner A. H. MBIS--an integrated system for the retrieval and analyses of sequence data from nucleic acids and proteins. Nucleic Acids Res. 1986 Jan 10;14(1):265–272. doi: 10.1093/nar/14.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Diener T. O. Viroid processing: a model involving the central conserved region and hairpin I. Proc Natl Acad Sci U S A. 1986 Jan;83(1):58–62. doi: 10.1073/pnas.83.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Franklin R. M. Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1504–1511. doi: 10.1073/pnas.55.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  5. Haseloff J., Symons R. H. Chrysanthemum stunt viroid: primary sequence and secondary structure. Nucleic Acids Res. 1981 Jun 25;9(12):2741–2752. doi: 10.1093/nar/9.12.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hashimoto J., Koganezawa H. Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Res. 1987 Sep 11;15(17):7045–7052. doi: 10.1093/nar/15.17.7045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keese P., Symons R. H. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4582–4586. doi: 10.1073/pnas.82.14.4582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Reisner A. H., Bucholtz C. A. The MTX package of computer programmes for the comparison of sequences of nucleotides and amino acid residues. Nucleic Acids Res. 1986 Jan 10;14(1):233–238. doi: 10.1093/nar/14.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rezaian M. A., Williams R. H., Gordon K. H., Gould A. R., Symons R. H. Nucleotide sequence of cucumber-mosaic-virus RNA 2 reveals a translation product significantly homologous to corresponding proteins of other viruses. Eur J Biochem. 1984 Sep 3;143(2):277–284. doi: 10.1111/j.1432-1033.1984.tb08370.x. [DOI] [PubMed] [Google Scholar]
  10. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  13. Visvader J. E., Symons R. H. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res. 1985 Apr 25;13(8):2907–2920. doi: 10.1093/nar/13.8.2907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES