Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Sep 25;17(18):7295–7302. doi: 10.1093/nar/17.18.7295

A study of the conformation of 5S RNA by 31P NMR.

P Zhang 1, R Rycyna 1, P B Moore 1
PMCID: PMC334809  PMID: 2677996

Abstract

Only a small number of resolved, single phosphorous, phosphodiester resonances are observed in the 31P spectrum of the 5S rRNA from E. coli. Its spectrum is much simpler than that of a tRNA (Gueron, M. and Shulman, R.G. (1975) Proc. Natl. Acad. Sci. 72, 3482-3484), which suggests that 5S RNA does not have a tightly folded, tRNA-like, tertiary structure. The resolved resonances in the 5S spectrum originate in loops D and E, near bases 88 and 76, respectively.

Full text

PDF
7295

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gewirth D. T., Abo S. R., Leontis N. B., Moore P. B. Secondary structure of 5S RNA: NMR experiments on RNA molecules partially labeled with nitrogen-15. Biochemistry. 1987 Aug 11;26(16):5213–5220. doi: 10.1021/bi00390a047. [DOI] [PubMed] [Google Scholar]
  2. Gewirth D. T., Moore P. B. Effects of mutation on the downfield proton nuclear magnetic resonance spectrum of the 5S RNA of Escherichia coli. Biochemistry. 1987 Sep 8;26(18):5657–5665. doi: 10.1021/bi00392a012. [DOI] [PubMed] [Google Scholar]
  3. Gewirth D. T., Moore P. B. Exploration of the L18 binding site on 5S RNA by deletion mutagenesis. Nucleic Acids Res. 1988 Nov 25;16(22):10717–10732. doi: 10.1093/nar/16.22.10717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gorenstein D. G., Luxon B. A. High-resolution phosphorus nuclear magnetic resonance spectra of yeast phenylalanine transfer ribonucleic acid. Melting curves and relaxation effects. Biochemistry. 1979 Aug 21;18(17):3796–3804. doi: 10.1021/bi00584a024. [DOI] [PubMed] [Google Scholar]
  5. Guéron M., Shulman R. G. 31P magnetic resonance of tRNA. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3482–3485. doi: 10.1073/pnas.72.9.3482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kime M. J., Gewirth D. T., Moore P. B. Assignment of resonances in the downfield proton spectrum of Escherichia coli 5S RNA and its nucleoprotein complexes using components of a ribonuclease-resistant fragment. Biochemistry. 1984 Jul 17;23(15):3559–3568. doi: 10.1021/bi00310a027. [DOI] [PubMed] [Google Scholar]
  7. Kime M. J., Moore P. B. Physical evidence for a domain structure in Escherichia coli 5 S RNA. FEBS Lett. 1983 Mar 7;153(1):199–203. doi: 10.1016/0014-5793(83)80147-1. [DOI] [PubMed] [Google Scholar]
  8. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moore P. B., Abo S., Freeborn B., Gewirth D. T., Leontis N. B., Sun G. Preparation of 5S RNA-related materials for nuclear magnetic resonance and crystallography studies. Methods Enzymol. 1988;164:158–174. doi: 10.1016/s0076-6879(88)64041-9. [DOI] [PubMed] [Google Scholar]
  10. Salemink P. J., Swarthof T., Hilbers C. W. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy. Biochemistry. 1979 Aug 7;18(16):3477–3485. doi: 10.1021/bi00583a007. [DOI] [PubMed] [Google Scholar]
  11. Tritton T. R., Armitage I. M. Phosphorus-31 NMR studies of E. coli ribosomes. Nucleic Acids Res. 1978 Oct;5(10):3855–3869. doi: 10.1093/nar/5.10.3855. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES