Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Oct 11;17(19):7809–7819. doi: 10.1093/nar/17.19.7809

Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA2.

V Brault 1, L Hibrand 1, T Candresse 1, O Le Gall 1, J Dunez 1
PMCID: PMC334888  PMID: 2798129

Abstract

The complete nucleotide sequence of hungarian grapevine chrome mosaic nepovirus (GCMV) RNA2 has been determined. The RNA sequence is 4441 nucleotides in length, excluding the poly(A) tail. A polyprotein of 1324 amino acids with a calculated molecular weight of 146 kDa is encoded in a single long open reading frame extending from nucleotides 218 to 4190. This polyprotein is homologous with the protein encoded by the S strain of tomato black ring virus (TBRV) RNA2, the only other nepovirus sequenced so far. Direct sequencing of the viral coat protein and in vitro translation of transcripts derived from cDNA sequences demonstrate that, as for comoviruses, the coat protein is located at the carboxy terminus of the polyprotein. A model for the expression of GCMV RNA2 is presented.

Full text

PDF
7809

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel P. P., Nelson R. S., De B., Hoffmann N., Rogers S. G., Fraley R. T., Beachy R. N. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 1986 May 9;232(4751):738–743. doi: 10.1126/science.3457472. [DOI] [PubMed] [Google Scholar]
  2. Franssen H., Goldbach R., Broekhuijsen M., Moerman M., van Kammen A. Expression of Middle-Component RNA of Cowpea Mosaic Virus: In Vitro Generation of a Precursor to Both Capsid Proteins by a Bottom-Component RNA-Encoded Protease from Infected Cells. J Virol. 1982 Jan;41(1):8–17. doi: 10.1128/jvi.41.1.8-17.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  4. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  5. Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. 1987 Aug 20;196(4):947–950. doi: 10.1016/0022-2836(87)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Le Gall O., Candresse T., Brault V., Bretout C., Hibrand L., Dunez J. Cloning full-length cDNA of grapevine chrome mosaic nepovirus. Gene. 1988 Dec 15;73(1):67–75. doi: 10.1016/0378-1119(88)90313-7. [DOI] [PubMed] [Google Scholar]
  7. Lin H. C., Lei S. P., Wilcox G. An improved DNA sequencing strategy. Anal Biochem. 1985 May 15;147(1):114–119. doi: 10.1016/0003-2697(85)90016-8. [DOI] [PubMed] [Google Scholar]
  8. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tumer N. E., Clark W. G., Tabor G. J., Hironaka C. M., Fraley R. T., Shah D. M. The genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase are expressed differentially in petunia leaves. Nucleic Acids Res. 1986 Apr 25;14(8):3325–3342. doi: 10.1093/nar/14.8.3325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wellink J., van Kammen A. Proteases involved in the processing of viral polyproteins. Brief review. Arch Virol. 1988;98(1-2):1–26. doi: 10.1007/BF01321002. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES