Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Oct 25;17(20):8283–8300. doi: 10.1093/nar/17.20.8283

Transcriptional and translational analysis of the human theta globin gene.

S O Leung 1, E Whitelaw 1, N J Proudfoot 1
PMCID: PMC334964  PMID: 2813063

Abstract

The human theta-globin gene in man appears to be functional, based on its sequence and evolutionary conservation. However its physiological role is unknown and furthermore its deletion in some individuals appears to have no effect on erythroid development. We have therefore analysed the transcriptional and translational competence of the theta globin gene to assess whether or not it is a silent or active globin gene. First, we demonstrate that theta globin mRNA is correctly spliced, by sequencing its cDNA. Second, using this theta cDNA, we generated synthetic theta globin mRNA and were able to demonstrate that this mRNA is translated into theta globin protein in wheat germ in vitro translation extracts. Similarly, the theta globin gene transfected into an erythroid cell line produces a protein product that comigrates with theta globin. Finally, we analysed the unusual promoter of the theta globin gene. The GC rich sequence directly adjacent to the multiple cap sites of theta globin mRNA functions as a promoter element in both erythroid and non-erythroid cell lines, while the more usual CCAAT and ATA box regions (found in all other globin genes) which are displaced by the GC rich promoter sequence, do not possess detectible promoter activity. Taken together, these results suggest that theta globin may have some as yet undetermined role in human erythropoiesis.

Full text

PDF
8283

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clegg J. B. Can the product of the theta gene be a real globin? Nature. 1987 Oct 1;329(6138):465–466. doi: 10.1038/329465a0. [DOI] [PubMed] [Google Scholar]
  2. Fischel-Ghodsian N., Higgs D. R., Beyer E. C. Function of a new globin gene. Nature. 1987 Oct 1;329(6138):397–397. doi: 10.1038/329397b0. [DOI] [PubMed] [Google Scholar]
  3. Giguére V., Isobe K., Grosveld F. Structure of the murine Thy-1 gene. EMBO J. 1985 Aug;4(8):2017–2024. doi: 10.1002/j.1460-2075.1985.tb03886.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ingraham H. A., Evans G. A. Characterization of two atypical promoters and alternate mRNA processing in the mouse Thy-1.2 glycoprotein gene. Mol Cell Biol. 1986 Aug;6(8):2923–2931. doi: 10.1128/mcb.6.8.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klein G., Zeuthen J., Eriksson I., Terasaki P., Bernoco M., Rosén A., Masucci G., Povey S., Ber R. Hybridization of a myeloid leukemia-derived human cell line (K562) with a human Burkitt's lymphoma line (P3HR-1). J Natl Cancer Inst. 1980 Apr;64(4):725–738. [PubMed] [Google Scholar]
  8. Leung S., Proudfoot N. J., Whitelaw E. The gene for theta-globin is transcribed in human fetal erythroid tissues. Nature. 1987 Oct 8;329(6139):551–554. doi: 10.1038/329551a0. [DOI] [PubMed] [Google Scholar]
  9. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  10. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  11. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Proudfoot N. J., Rutherford T. R., Partington G. A. Transcriptional analysis of human zeta globin genes. EMBO J. 1984 Jul;3(7):1533–1540. doi: 10.1002/j.1460-2075.1984.tb02007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Proudfoot N. J., Rutherford T. R., Partington G. A. Transcriptional analysis of human zeta globin genes. EMBO J. 1984 Jul;3(7):1533–1540. doi: 10.1002/j.1460-2075.1984.tb02007.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Proudfoot N. J. Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature. 1986 Aug 7;322(6079):562–565. doi: 10.1038/322562a0. [DOI] [PubMed] [Google Scholar]
  16. Rutherford T. R., Clegg J. B., Weatherall D. J. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979 Jul 12;280(5718):164–165. doi: 10.1038/280164a0. [DOI] [PubMed] [Google Scholar]
  17. Shaw J. P., Marks J., Shen C. K. Evidence that the recently discovered theta 1-globin gene is functional in higher primates. Nature. 1987 Apr 16;326(6114):717–720. doi: 10.1038/326717a0. [DOI] [PubMed] [Google Scholar]
  18. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  19. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  20. Williams A. F., Gagnon J. Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science. 1982 May 14;216(4547):696–703. doi: 10.1126/science.6177036. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES