Abstract
4,5',8-Trimethylpsoralen was attached to the C8-position of deoxyadenosine via a sulfur atom and a five carbon atom linker. The modified deoxyadenosine was then converted to a protected phosphoramidite and used as unusual as a building block for solid phase oligodeoxyribonucleotide synthesis. The efficiency of the photoreaction of a psoralen-modified oligonucleotide to a complementary matrix strand reached more than 90% within a 1 hour irradiation time at a wavelength of 345 nm.
Full text
PDF![8967](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/cafc6ef4f6b4/nar00139-0066.png)
![8968](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/2f53f07661bf/nar00139-0067.png)
![8969](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/c560057f4fbc/nar00139-0068.png)
![8970](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/018d207e13e5/nar00139-0069.png)
![8971](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/4f395edec566/nar00139-0070.png)
![8972](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/ad5ba01d9f6c/nar00139-0071.png)
![8973](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/c61f5e390eff/nar00139-0072.png)
![8974](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/646f82ad2f55/nar00139-0073.png)
![8975](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/ce714ef95560/nar00139-0074.png)
![8976](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/fc7cd6a3ac3b/nar00139-0075.png)
![8977](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/11b192900b0d/nar00139-0076.png)
![8978](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ae2/335106/8fd1da621683/nar00139-0077.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asseline U., Delarue M., Lancelot G., Toulmé F., Thuong N. T., Montenay-Garestier T., Hélène C. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3297–3301. doi: 10.1073/pnas.81.11.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cimino G. D., Gamper H. B., Isaacs S. T., Hearst J. E. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem. 1985;54:1151–1193. doi: 10.1146/annurev.bi.54.070185.005443. [DOI] [PubMed] [Google Scholar]
- Dreyer G. B., Dervan P. B. Sequence-specific cleavage of single-stranded DNA: oligodeoxynucleotide-EDTA X Fe(II). Proc Natl Acad Sci U S A. 1985 Feb;82(4):968–972. doi: 10.1073/pnas.82.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelson R., Berger C., Gasparro F., Jegasothy B., Heald P., Wintroub B., Vonderheid E., Knobler R., Wolff K., Plewig G. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med. 1987 Feb 5;316(6):297–303. doi: 10.1056/NEJM198702053160603. [DOI] [PubMed] [Google Scholar]
- Garrett-Wheeler E., Lockard R. E., Kumar A. Mapping of psoralen cross-linked nucleotides in RNA. Nucleic Acids Res. 1984 Apr 11;12(7):3405–3423. doi: 10.1093/nar/12.7.3405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikehara M., Ohtsuka E., Uesugi S. Studies of nucleosides and nucleotides. LVI. A versatile method for the systhesis of 8-mercaptoadenosine nucleotides. Chem Pharm Bull (Tokyo) 1973 Feb;21(2):444–445. doi: 10.1248/cpb.21.444. [DOI] [PubMed] [Google Scholar]
- Ikehara M., Uesugi S. Studies on nucleosides and nucleotides. 38. Synthesis of 8-bromoadenosine nucleotides. Chem Pharm Bull (Tokyo) 1969 Feb;17(2):348–354. doi: 10.1248/cpb.17.348. [DOI] [PubMed] [Google Scholar]
- Isaacs S. T., Shen C. K., Hearst J. E., Rapoport H. Synthesis and characterization of new psoralen derivatives with superior photoreactivity with DNA and RNA. Biochemistry. 1977 Mar 22;16(6):1058–1064. doi: 10.1021/bi00625a005. [DOI] [PubMed] [Google Scholar]
- Lee B. L., Murakami A., Blake K. R., Lin S. B., Miller P. S. Interaction of psoralen-derivatized oligodeoxyribonucleoside methylphosphonates with single-stranded DNA. Biochemistry. 1988 May 3;27(9):3197–3203. doi: 10.1021/bi00409a011. [DOI] [PubMed] [Google Scholar]
- Miller P. S., Reddy M. P., Murakami A., Blake K. R., Lin S. B., Agris C. H. Solid-phase syntheses of oligodeoxyribonucleoside methylphosphonates. Biochemistry. 1986 Sep 9;25(18):5092–5097. doi: 10.1021/bi00366a017. [DOI] [PubMed] [Google Scholar]
- Parrish J. A., Fitzpatrick T. B., Tanenbaum L., Pathak M. A. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N Engl J Med. 1974 Dec 5;291(23):1207–1211. doi: 10.1056/NEJM197412052912301. [DOI] [PubMed] [Google Scholar]
- Pieles U., Englisch U. Psoralen covalently linked to oligodeoxyribonucleotides: synthesis, sequence specific recognition of DNA and photo-cross-linking to pyrimidine residues of DNA. Nucleic Acids Res. 1989 Jan 11;17(1):285–299. doi: 10.1093/nar/17.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosen C. A., Sodroski J. G., Goh W. C., Dayton A. I., Lippke J., Haseltine W. A. Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature. 1986 Feb 13;319(6054):555–559. doi: 10.1038/319555a0. [DOI] [PubMed] [Google Scholar]
- Shen C. K., Hearst J. E. Psoralen-crosslinked secondary structure map of single-stranded virus DNA. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2649–2653. doi: 10.1073/pnas.73.8.2649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song P. S., Tapley K. J., Jr Photochemistry and photobiology of psoralens. Photochem Photobiol. 1979 Jun;29(6):1177–1197. doi: 10.1111/j.1751-1097.1979.tb07838.x. [DOI] [PubMed] [Google Scholar]
- Van Houten B., Gamper H., Hearst J. E., Sancar A. Construction of DNA substrates modified with psoralen at a unique site and study of the action mechanism of ABC excinuclease on these uniformly modified substrates. J Biol Chem. 1986 Oct 25;261(30):14135–14141. [PubMed] [Google Scholar]