Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Dec 25;17(24):10307–10319. doi: 10.1093/nar/17.24.10307

Synthesis, thermal stability and reactivity towards 9-aminoellipticine of double-stranded oligonucleotides containing a true abasic site.

J R Bertrand 1, J J Vasseur 1, B Rayner 1, J L Imbach 1, J Paoletti 1, C Paoletti 1, C Malvy 1
PMCID: PMC335302  PMID: 2602153

Abstract

A 13 mers abasic oligonucleotide was synthetized. It was therefore possible to compare thermal stability and reactivity of duplex oligonucleotides either with an apurinic/apyrimidinic site or without any lesion. An important decrease in the melting temperature appeared for duplexes with an abasic site. The chemical reaction of these modified oligonucleotides with the intercalating agent 9-aminoellipticine was studied by gel electrophoresis and by fluorescence. The formation of a Schiff base between 9-aminoellipticine and abasic sites was rapid and complete with duplexes at 11 degrees C. Schiff base related fluorescence and beta-elimination cleavage were more important with the apyrimidinic sites than with the apurinic ones. When compared to previous results obtained with the model d(TprpT) some unexpected behaviours appeared with longer and duplex oligonucleotides. For instance only partial beta-elimination cleavage was observed. It is likely that stacking parameters in the double helix play a great role in the studied reaction.

Full text

PDF
10307

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailly V., Verly W. G. Escherichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst. Biochem J. 1987 Mar 1;242(2):565–572. doi: 10.1042/bj2420565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailly V., Verly W. G. Possible roles of beta-elimination and delta-elimination reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites in mammalian cells. Biochem J. 1988 Jul 15;253(2):553–559. doi: 10.1042/bj2530553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertrand J. R., Malvy C., Paoletti C. Quantification by fluorescence of apurinic sites in DNA. Biochem Biophys Res Commun. 1987 Mar 13;143(2):768–774. doi: 10.1016/0006-291x(87)91420-3. [DOI] [PubMed] [Google Scholar]
  4. Coombs M. M., Livingston D. C. Reaction of apurinic acid with aldehyde reagents. Biochim Biophys Acta. 1969 Jan 21;174(1):161–173. doi: 10.1016/0005-2787(69)90239-1. [DOI] [PubMed] [Google Scholar]
  5. Liuzzi M., Talpaert-Borlé M. A new approach to the study of the base-excision repair pathway using methoxyamine. J Biol Chem. 1985 May 10;260(9):5252–5258. [PubMed] [Google Scholar]
  6. Malvy C., Bertrand J. R. Differential reactivity of 9-NH2-ellipticine on apurinic and apyrimidinic sites in circular DNA. FEBS Lett. 1986 Nov 10;208(1):155–157. doi: 10.1016/0014-5793(86)81552-6. [DOI] [PubMed] [Google Scholar]
  7. Malvy C., Prévost P., Gansser C., Viel C., Paoletti C. Efficient breakage of DNA apurinic sites by the indoleamine related 9-amino-ellipticine. Chem Biol Interact. 1986 Jan;57(1):41–53. doi: 10.1016/0009-2797(86)90047-5. [DOI] [PubMed] [Google Scholar]
  8. Malvy C., Safraoui H., Bloch E., Bertrand J. R. Involvement of apurinic sites in the synergistic action of alkylating and intercalating drugs in Escherichia coli. Anticancer Drug Des. 1988 Mar;2(4):361–370. [PubMed] [Google Scholar]
  9. Millican T. A., Mock G. A., Chauncey M. A., Patel T. P., Eaton M. A., Gunning J., Cutbush S. D., Neidle S., Mann J. Synthesis and biophysical studies of short oligodeoxynucleotides with novel modifications: a possible approach to the problem of mixed base oligodeoxynucleotide synthesis. Nucleic Acids Res. 1984 Oct 11;12(19):7435–7453. doi: 10.1093/nar/12.19.7435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983 Jan 18;22(2):256–263. doi: 10.1021/bi00271a004. [DOI] [PubMed] [Google Scholar]
  11. Pochet S., Huynh-Dinh T., Neumann J. M., Tran-Dinh S., Adam S., Taboury J., Taillandier E., Igolen J. NMR, CD and IR spectroscopies of a tridecanucleotide containing a no-base residue: coexistence of B and Z conformations. Nucleic Acids Res. 1986 Jan 24;14(2):1107–1126. doi: 10.1093/nar/14.2.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Raap J., Dreef C. E., van der Marel G. A., van Boom J. H., Hilbers C. W. Synthesis and proton-NMR studies of oligonucleotides containing an apurinic (AP) site. J Biomol Struct Dyn. 1987 Oct;5(2):219–247. doi: 10.1080/07391102.1987.10506391. [DOI] [PubMed] [Google Scholar]
  13. Seela F., Kaiser K. Oligodeoxyribonucleotides containing 1,3-propanediol as nucleoside substitute. Nucleic Acids Res. 1987 Apr 10;15(7):3113–3129. doi: 10.1093/nar/15.7.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Takeshita M., Chang C. N., Johnson F., Will S., Grollman A. P. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J Biol Chem. 1987 Jul 25;262(21):10171–10179. [PubMed] [Google Scholar]
  15. Vasseur J. J., Rayner B., Imbach J. L. Preparation of a short synthetic apurinic oligonucleotide. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1204–1208. doi: 10.1016/0006-291x(86)90378-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES