Abstract
Bariatric surgery is currently the most effective and durable therapy for obesity. Roux-en-Y gastric bypass surgery, the most commonly performed procedure worldwide, causes substantial weight loss and improvement in several comorbidities associated with obesity, especially type 2 diabetes. Several mechanisms are proposed to explain the improvement in glucose metabolism after RYGB surgery: the caloric restriction and weight loss per se, the improvement in insulin resistance and beta cell function, and finally the alterations in the various gastrointestinal hormones and adipokines that have been shown to play an important role in glucose homeostasis. However, the timing, exact changes of these hormones, and the relative importance of these changes in the metabolic improvement postbariatric surgery remain to be further clarified. This paper reviews the various changes post-RYGB in adipokines and gut peptides in subjects with T2D.
1. Introduction
The epidemic of obesity continues to increase, followed in close parallel by T2D, and the World Health Organization estimates show that by 2015, around 2.3 billion adults will be overweight and greater than 700 million will be obese [1]. Recommendations to achieve weight loss include primarily lifestyle measures such as dietary therapy and exercise, limited pharmacological treatment, and bariatric surgery. Bariatric surgery has proven so far to be the most effective and durable treatment option for both the excess weight and the related comorbidities [2, 3]. Strong evidence has revealed that in addition to inducing major weight loss, bariatric surgery further ameliorates diabetes, hypertension, and dyslipidemia [4]. Of those with T2D, 78% had complete resolution following surgery and diabetes improved or resolved in 86.6% of patients. The greatest effect on weight loss and diabetes resolution was seen in patients undergoing biliopancreatic diversion/duodenal switch followed by gastric bypass and then banding procedures [5].
Among the various techniques in bariatric surgery, RYGB is the most common bariatric surgery performed worldwide and is considered by many surgeons as the “gold standard” procedure [6]. The RYGB operation was developed in the 1960's following observations of weight loss after gastric resection for peptic ulcer disease. Surgeons worked on multiple alterations of the operation and deduced that for effective weight reduction, the stomach size needs to be reduced to less than 50 mLs. This small part of the stomach that remains in continuity with the digestive tract is referred to as the gastric pouch, whereas the majority of the stomach and the duodenum are excluded and are no longer in direct contact with food. The gastric pouch is then reattached to the small intestines using either staples or sutures, and this connection is referred to as the stoma. The preferred way to connect the pouch to the small intestine is via a Roux-y-configuration as shown in Figure 1. In the RYGB, the food goes across the pouch into the “alimentary limb”, whereas the biliary and pancreatic juices flow a distance away from the pouch to form what is referred to as the “biliopancreatic limb” to minimize the harmful effects of “bile reflux” [7].
Figure 1.

Roux-en-Y gastric bypass. P: gastric pouch. AL: alimentary limb. BPL: biliopancreatic limb.
Several studies have demonstrated the dramatic effect of RYGB on T2D occurring as early as 6 days postoperatively long before major weight loss has occurred [8]. Elucidating the mechanisms of improvement of diabetes after RYGB may lead to a better understanding of the pathophysiology of T2D and guide the search for novel therapies. Hypothesis linking the early and rapid metabolic improvement to bariatric surgery have focused on hormonal changes, namely, adipokines and gut peptides. Therefore, the purpose of this paper is to critically review the recent data and clinical studies addressing the changes in gut-related peptides and other hormones after RYGB surgery and the resulting alterations in metabolic profile.
2. Literature Search
A Pubmed search through the English Literature was conducted from 1979 to 2010 using various combinations of the following key words: “adiponectin”, “amylin”, “bariatric surgery”, “gastric bypass”, “gastrointestinal hormones”, “GLP-1”, “ghrelin”, “gut hormones”, “insulin”, “leptin”, “metabolic surgery”, “obesity”, “oxyntomodulin”, “peptide YY” (PYY), and “Roux-en-Y gastric bypass” (RYGB). Only longitudinal and cross-sectional studies assessing hormonal changes after RYGB surgery in obesity and diabetes from year 2000 to 2010 were identified and included due to paucity of studies addressing this issue before year 2000.
3. Mechanisms of Improvement of Diabetes after RYGB Surgery
Weight loss per se and the decrease in fat mass induced by bariatric surgery reduce insulin resistance through the direct and indirect effects of adipocytokines and through the fall in lipid content in both liver and muscle. Furthermore, caloric restriction imposed by bariatric surgery allows the beta-cells to rest and they are thus minimally challenged. A significant improvement in glucose homeostasis that is independent of weight loss can be achieved by following a very low-caloric diet [9, 10]. One study by Henry et al. showed that a 330 cal/day diet resulted in reduction in fasting plasma glucose from 297 mg/dL to 138 mg/dL over 40 days with 87% of this drop occurring in the first 10 days [10]. However, the effects of weight reduction and caloric restriction alone do not account for the dramatic and sustained effects of bariatric surgery on diabetes, long after negative caloric balance had ceased. Two hypotheses have been proposed to explain how bariatric surgery improves diabetes early on.
Hind gut hypothesis: this hypothesis holds that diabetes control results from the rapid delivery of nutrients to the lower intestine overstimulating the L cells to release gut hormones such as GLP-1, peptide YY, and oxyntomodulin. These hormones exert anorectic and insulinotropic effects to various extents thus improving glucose homeostasis [11, 12].
Foregut hypothesis: in normal conditions, the passage of nutrients along the proximal bowel stimulates the production of an unidentified factor with anti-incretin properties responsible for insulin resistance and abnormal glycemic control. Thus, the exclusion of the proximal intestine would reduce the production of anti-incretins and would therefore increase insulin secretion and action and improve diabetes [12–14].
Rubino et al. supported the foregut hypothesis as an explanation for the improvement in glucose homeostasis after RYGB surgery. They showed that excluding the proximal intestine in Goto-Kakizaki (GK) diabetic rats that have undergone gastrojejunostomy ameliorated their diabetes compared to rats with an intact duodenal passage. Conversely, in rats that had undergone duodenal-jejunal bypass, restoration of their duodenal passage reestablished their impaired glucose tolerance [15]. A recent study by Knop suggested a possible role for glucagon or gut-derived glucagonotropic signaling as diabetogenic signal of the foregut hypothesis [14].
Since RYGB significantly changes the anatomy of the gastrointestinal tract, alteration in the secretion of several gut peptides ensues. These hormones are involved in appetite regulation and energy balance and have been implicated in glucose homeostasis as well. In the next section follows a detailed review of individual peptides and hormones.
4. Gut Hormones
4.1. Ghrelin
Ghrelin is a 28 aminoacid peptide secreted predominantly by the X/A-like enteroendocrine cells of the fundus of the stomach [16]. Plasma ghrelin levels rise nearly twofold before a meal and fall within one hour after eating [17]. It is the only known circulating orexigen. Ghrelin circulates in two different forms: acylated ghrelin and desacylated ghrelin [18]. Acyl-ghrelin accounts for less than 10% of the total circulating ghrelin. It binds to GHSR1a receptor and stimulates food intake as well as GH secretion [19]. Des-acyl ghrelin, the major circulating form of ghrelin, does not bind to GHSR1a receptor but it is not biologically inactive. However, it has been shown to counteract the effects of acyl-ghrelin on insulin secretion and glucose metabolism in humans [20] and reduce food intake in mice [21].
How does ghrelin contribute to diabetes resolution after RYGB surgery?
Ghrelin has been shown to increase levels of GH [22], cortisol, and epinephrine [23], three counter regulatory hormones that oppose insulin action. It decreases as well secretion of the insulin sensitizing hormone adiponectin [24]. In addition, ghrelin suppresses intracellular insulin signaling in cultured hepatocytes [25] impairing hepatic insulin sensitivity. Furthermore, ghrelin could influence insulin secretion by a direct effect on the pancreas as the ghrelin receptor GHSR1-a is expressed in various tissues including the pancreatic islets [26, 27]. Exogenous ghrelin administration decreases insulin secretion in both human and animal studies [28, 29]. Some studies report improved glucose disposal by muscle under ghrelin; however, the effect of ghrelin on the liver is that of insulin insensitivity so that the overall riding effect is that of an increase in plasma glucose [30, 31]. Therefore suppression of ghrelin after RYGB surgery is associated with improved glucose homeostasis.
Studies reporting changes in ghrelin levels after RYGB surgery have shown conflicting results (see Table 1). Ghrelin levels have been reported to decrease as early as during the intraoperative period following division of the stomach [32] or later [33–38]. Other studies have reported no change in ghrelin levels after RYGB surgery [34, 39–41].
Table 1.
Ghrelin and RYGB surgery.
| Author/year | Type of study | Subjects | Preop BMI | % weight loss | F/U time | Change in hormone |
|---|---|---|---|---|---|---|
| Geloneze et al. 2003 [33] | Prospective controlled | 28 RYGB surgery 14 T2D 14 NGT lean group |
56.3 ± 10.2 24.2 ± 1.5 |
% EWL 67.4 ± 13.4 | 1 y | Lower ghrelin levels in obese compared to lean presurgery; No difference in fasting ghrelin in T2D and NGT before surgery; Decrease in fasting ghrelin in both T2D and NGT after surgery. |
| Lin et al. 2004 [32] | Prospective controlled | 34 RYGB 4 VBG 4 ARS 4 lean ARS |
47.0 ± 0.7 43.7 ± 2.5 40.0 ± 2.0 23.8 ± 0.9 |
NA | 30 min postop | Ghrelin higher in lean ARS compared to pre-RYGB; Decrease in ghrelin levels post-RYGB to levels lower that lean ARS; |
| Frühbeck et al. 2004 [37] | Prospective controlled | 8 RYGB 8 AGB 8 Conv 6 Total gastrectomy |
44.2 ± 2.6 44.8 ± 1.6 43.7 ± 1.5 29.9 + 1.1 |
NA | 6 mo | At 6 mo, lower fasting ghrelin in RYGB and gastrectomy groups compared to AGB and conv group; No differences in fasting ghrelin at 6 mos between RYGB group and gastrectomy group. |
| Couce et al., 2006 [34] | Prospective controlled | 49 obese (30 F) RYGB 19 obese (9 F) other GI surgeries |
50 ± 5.3 29.8 ± 3.1 |
NA | 2 hr 10 d 6 mo |
Decrease in fasting ghrelin at 2 hr in both groups compared to preop; Decrease in fasting ghrelin 10 d postop in only RYGB group compared to preop; At 6 mo, no change in ghrelin levels in both groups compared to preoperative levels. |
| Morínigo et al. 2008 [35] | Prospective controlled | 25 non diabetics RYGB (6 F) 6 nonobese (2 F) 10 severely obese T2D (5 F) RYGB |
48.8 ± 1.2 49.2 ± 2.0 |
43.0 ± 2.3 | 6 and 52 wk | Decrease in fasting plasma ghrelin at 6 wk postop; At 52 wk, plasma ghrelin returned to baseline levels. |
| Karamanakos et al. 2008 [40] | Prospective controlled | 16 RYGB (12 F, 2 T2D) 16 LSG (15 F, 1 IGT) |
46.6 ± 3.7 45.1 ± 3.6 |
% EWLa
60.5 ± 10.7 69.7 ± 14.6 |
1, 3, 6 and 12 mo |
No significant change in fasting ghrelin RYGB group; Significant decrease in LSG. |
| Oliván et al. 2009 [39] | Prospective controlled | 21 T2D 10 RYGB 11 diet 9 obese nondiabetics |
47.4 ± 10.6 42.8 ± 3.8 45.5 ± 7.1 |
NA | 10 Kg weight loss | No change in fasting ghrelin after RYGB |
| Frühbeck et al. 2004 [38] | Retrospective controlled | 6 RYGB 7 AGB 3 BPD |
42.6 ± 1.6 45.6 ± 1.8 60.5 ± 7.3 |
50.1 ± 4.4 42.2 ± 3.1 54.2 ± 4.3 |
6.1 ± 0.4 mo 7.0 ± 0.6 mo 4.4 ± 0.8 mo |
Significant decrease in fasting ghrelin in RYGB group compared to the other 2 groups |
| Foschi et al. 2008 [36] | Retrospective controlled | 10 RYGB (9 F) 12 VBG (11 F) |
44.1 ± 1.8 42.9 ± 1.6 |
20 | 20% reduction in BMI ( = 131 ± 6 d for RYGB) (119 ± 4.2 for VBG) |
Basal ghrelin plasma levels reduced after RYGBP but increased after VBG |
| Rodieux et al. 2008 [41] | Cross-sectional controlled | 8 RYGB 6 GB 8 weight matched |
44.9 ± 1.8 41.1 ± 0.5 29.2 ± 0.8 |
47.8 ± 3.3 32.4 ± 2.0 |
9 to 48 mo 25 to 85 mo |
No change in fasting ghrelin Maximal PP suppression of ghrelin greatest in RYGB group |
Abbreviations: ABG: adjustable gastric banding, ARS: anti-reflux surgery, Conv: conventional weight loss, GB: gastric banding, GI: gastrointestinal, IGT: impaired glucose tolerance, NA: data not available, LSG: laparoscopic sleeve gastrectomy, Postop: postoperatively, RYGB: Roux-en-y gastric bypass, T2D: type 2 diabetes, VBG: vertical banded gastroplasty.
a% EWL: excess weight loss = [(operative weight − follow-up weight)/operative excess weight] × 100.
4.2. Glucagonlike Peptide-1 (GLP-1)
Glucagonlike peptide-1 is a 30 aminoacid peptide secreted by the L cells of the distal ileum and colon in response to ingested nutrients. It enhances glucose-dependent insulin release and improves beta cell function [42, 43]. Furthermore, it inhibits glucagon secretion, delays gastric emptying and indirectly decreases food intake [44]. Circulating GLP-1 has a short half-life of less than 2 minutes principally due to its inactivation by the plasma enzyme dipeptidyl peptidase-IV (DPP-IV) [45]. Chronic subcutaneous GLP-1 administration improved glycemic control and decreased body weight in type 2 diabetic patients [46]. In fact, GLP-1 R agonists, resistant to DPPIV inactivation, have been successfully used in the treatment of diabetes. Similarly, direct DPPIV inhibitors also improve glycemic control in T2D, although to a lesser extent, likely because endogenous GLP-1 levels are low in diabetes. Therefore, GLP-1 retains its insulinotropic property in diabetic subjects, but its circulating levels are decreased [47, 48].
In theory, GLP-1 should increase after RYGB due to the rapid nutrient delivery to the ileum where most of the L cells are located. Most data obtained regarding changes in GLP-1 after RYGB surgery have shown an increase [49–58], supportive of this theory, except for one study which showed a decrease in both controls and subjects [59]. Few others have shown no change [41, 60, 61]. A summary of the studies is presented in Table 2.
Table 2.
GLP-1 and RYGB surgery.
| Author/year | Type of study | Subjects | Preop BMI | % weight loss | F/U time | Change in hormone |
|---|---|---|---|---|---|---|
| Morínigo et al. 2006 [51] | Prospective controlled | 9 (7 F) RYGB non diabetic 6 obese (4 F) |
47.4 ± 6.1 43.6 ± 7.9 |
NA | 6 wk | Greater increase in active GLP-1 postmeal in RYGB group postop compared to weight-matched obese |
| Laferrère et al. 2007 [50] | Prospective controlled | 8F T2DM RYGB 7 non diabetic obese |
43.6 ± 6.8 37.1 ± 11.6 |
NA | 1 mo | Fasting- and glucose-stimulated GLP-1 similar in S and C 1 month after RYGB, increase in GLP-1 (total and active) in response to oral glucose |
| Reinehr et al. 2007 [59] | Prospective controlled | 30 obese (26 F) 19 RYGB 11 GB |
45.7 ± 7.4 | 50% | 2 y | Decrease in fasting GLP-1 in both groups |
| Le Roux et al. 2007 [56] | Double-blind randomized prospective controlled | 7 RYGB 6 AGB |
44.5 ± 2.9 41.9 ± 7.5 |
NA | 9.5 ± 1.5 mo 17 ± 1.4 mo |
Early (2 d) and increased responses of PP GLP-1 in RYGB group only |
| Laferrère et al. 2008 [49] | Prospective controlled | 9 F T2D RYGB 10 F T2D diet induced weight loss |
43.3 ± 6.2 43.3 ± 3.6 |
NA | 1 mo 10 Kg weight loss |
Increase in total GLP-1 after oral glucose and GLP-1 AUC after RYGB but not after diet |
| Peterli et al. 2009 [54] | Randomized prospective controlled | 13 RYGB 14 LSG |
47 ± 6.4 45.7 ± 6.7 |
NA | 1 wk and 3 mo | Increased PP GLP-1 RYGB > LSG |
| Clements et al. 2004 [61] | Prospective uncontrolled | 20 obese (15 F) with T2D | 52.7 ± 8.8 | NA | 2, 6, and 12 wk postop | No change in fasting GLP-1 at any time point |
| Rubino et al. 2004 [60] | Prospective uncontrolled | S: 10 (9 F, 6 T2D) obese RYGB | 46.2 | NA | 3 wk | No change in fasting GLP-1 in postop |
| Borg et al. 2006 [57] | Prospective uncontrolled | 6 RYGB | 48.3 | NA | 1, 3, 6 mo postop | PP GLP-1 AUC increased at 6 mo postop |
| Morínigo et al. 2006 [52] | Prospective uncontrolled | 34 RYGB (23 F, 12 NGT, 12 IGT, 10 T2D) |
49.1 ± 1.0 | NGT: 34.5 ± 1.4 IGT: 29.2 ± 1.9 DM: 32.0 ± 2.4 |
6 wk 12 mo | Increase in PP GLP-1 AUC response in IGT and NGT at 6 wk Increase in PP GLP-1 AUC response in all 3 groups at 12 mo |
| De Carvalho et al. 2009 [53] | Prospective uncontrolled | 11 NGT (9 F) RYGB 8 AGM (4 T2DM, 4 IGT) (7 F) RYGB |
46.1 ± 2.27 46.5 ± 2.04% |
39.3 ± 2.24 36.4 ± 2.6 |
T1: First evaluation T2: presurgery T3: 9 mo after surgery |
Increase in GLP-1 levels after OGTT in both groups at T3 |
| Kashyap et al., 2010 [73] | Prospective uncontrolled | 16 (7 F) T2D 9 RYGB 7 GR |
47 ± 9 | 10% | 4 wk | No change in fasting GLP-1 in both groups Increase in PP GLP-1 response in RYGB group only |
| Le Roux et al. 2006 [55] | Cross-sectional controlled | 6 RYGB 6 GB 12 obese 15 lean |
49.8 46.1 47.1 23.8 |
NA | 6 to 36 mo | Higher postprandial GLP-1 response in RYGB group compared to fasting levels and to other groups |
| Korner et al. 2007 [58] | Cross-sectional controlled | 13 F non diabetic RYGB 10 F BND 13 F OW |
31.3 ± 1.3 36.1 ± 1.7 36.1 ± 2.2 |
35.6 ± 2.4 24.6 ± 2.3 |
24.6 ± 2 mo postop | Fasting GLP-1 similar in all groups At 30 min postmeal, GLP-1 higher in RYGB group compared to BND and OW GLP-1 AUC at 180 min greater in RYBG group compared to other groups |
| Rodieux et al. 2008 [41] | Cross-sectional controlled | 8 RYGB 6 GB 8 weight matched |
44.9 ± 1.8 41.1 ± 0.5 29.2 ± 0.8 |
47.8 ± 3.3 32.4 ± 2.0 |
9 to 48 mo (RYGB) 25 to 85 mo (GB) |
No difference in fasting GLP-1 between 3 groups; Exaggerated GLP-1 PP Response in RYGB. |
Abbreviations: AUC: area under the curve, AGM: abnormal glucose metabolism, BND: adjustable gastric banding, GR: gastric restrictive, IGT: impaired glucose tolerance, LSG: laparoscopic sleeve gastrectomy, NA: data not available, NGT: normal glucose tolerance, OGTT: oral glucose tolerance test, OW: overweight, Postop: postopertaively, PP: postprandial, RYGB: Roux-en-y gastricbBypass, T2D: type 2 diabetes.
4.3. Glucose-Dependent Insulinotropic Polypeptide (GIP)
Glucose-dependent insulinotropic peptide formerly known as gastric inhibitory polypeptide is a 42 aminoacid peptide that is secreted by the K cells of the duodenum and jejunum in response to ingested nutrients. It enhances glucose-dependent insulin secretion [62] and promotes beta cell proliferation [63]. Higher levels of basal GIP as well as an increased early phase postprandial GIP response were seen in obese subjects compared to lean individuals [48]. In subjects with T2D, the overall effect of GIP seems to be in favor of hyperglycemia. In a recent study by Chia et al., exogenous administration of GIP raised glucose levels in type 2 diabetic patients in both early and late postprandial phases [64]. One mechanism is the impaired insulinotropic action of GIP which has been observed particularly during the late phase of insulin secretion [47]. This could be explained by a defective expression of GIP receptors as observed in Zucker diabetic fatty rats [65]. Secondly, although GIP is an insulinotropic hormone, an elevation of glucagon secretion with GIP infusion was observed in the early postprandial phase counteracting insulin glucose lowering effect. Thirdly, exogenous administration of GIP, as reported by Chia et al., worsened hyperglycemia in the late postprandial phase evoking a potential suppressive effect of GIP on GLP-1 [64]. Furthermore, GIP may be directly implicated in fat metabolism and development of obesity by influencing insulin sensitivity of adipocytes. GIP promotes deposition of fat in adipose tissues and inhibits lipolysis [66, 67]. Mice lacking GIP receptors [68] or K cells [69]were protected from obesity when fed a high-fat diet, and young prediabetic ob/ob mice treated with (Pro3) GIP a specific and stable GIP receptor antagonist prevented the development of diabetes and related metabolic abnormalities in these rodents [70] Therefore, GIP receptor antagonists, by opposing GIP's anabolic action on adipose tissue, could represent a new treatment modality for obesity [71].
Since GIP is secreted by the proximal gut, bypassing the duodenum and part of the jejunum in the RYGB surgery is expected to result in a decrease in GIP secretion and therefore a more favorable glycemic milieu. Studies involving GIP and RYGB surgery have shown inconsistent results. Reduced levels postoperatively have been reported in some studies [60, 61] while others reported no change or an increase in GIP levels after surgery as shown in Table 3 [49, 50, 72, 73].
Table 3.
GIP and RYGB surgery.
| Author/year | Type of study | Subjects | Preop BMI | % weight loss | F/U time | Change in hormone |
|---|---|---|---|---|---|---|
| Laferrère et al. 2007 [50] | Prospective controlled | 8 F T2D RYGB 7 nondiabetic obese |
43.6 ± 6.8 37.1 ± 11.6 |
NA | 1 mo | Fasting- and glucose-stimulated GIP similar in S and C 1 month after RYGB, increase in GIP in response to oral glucose. |
| Laferrère et al. 2008 [49] | Prospective controlled | 9 F T2D RYGB 10 F T2D diet-induced weight loss |
43.3 ± 6.2 43.3 ± 3.6 |
NA | 1 mo 10 Kg weight loss |
No change in fasting GIP in both groups. Increase in peak GIP after OGTT in RYGB group only. |
| Rubino et al., 2004 [60] | Prospective uncontrolled | 10 (9 F, 6 T2D) obese RYGB | 46.2 | NA | 3 wk | Baseline GIP higher in diabetics compared to nondiabetics. Decrease in fasting GIP in diabetics only. |
| Clements et al. 2004 [61] | Prospective uncontrolled | 20 obese (15 F) with T2D | 52.7 ± 8.8 | NA | 2, 6 and 12 wk postop | Decrease in fasting GIP at 6 and 12 wk. |
| Whitson et al. 2007 [72] | Prospective uncontrolled | 10 (9 F, 5 T2D) RYGB |
50 ± 6 | NA | 6 mo | No change in GIP postop (nonfasting). |
| Kashyap et al. 2010 [73] | Prospective uncontrolled | 16 (7 females) T2D 9 RYGB 7 GR |
47 ± 9 | 10% | 4 wk | No change in fasting or PP GIP in both groups. |
| Korner et al. 2007 [58] | Cross-sectional controlled | 13 F RYGB 10 F BND 13 F overweight |
31.3 ± 1.3 36.1 ± 1.7 36.1 ± 2.2 |
35.6 ± 2.4 24.6 ± 2.3 |
24.6 ± 2 mo postop | Blunted PP GIP peak after RYGB |
Abbreviations: BND: adjustable gastric banding, GR: gastric restrictive, NA: data not available, OGTT: oral glucose tolerance test, Postop: postoperatively, PP: postprandial, RYGB: Roux-en-y gastric bypass, T2D: type 2 diabetes.
4.4. Oxyntomodulin (OXM)
Oxyntomodulin is a 37 aminoacid peptide derived from proglucagon cosecreted with GLP-1 and PYY from the L cells of the distal gut in response to ingested nutrients [74]. Central and peripheral administration of OXM has been observed to reduce food intake in rats [75]. Infusion of OXM in humans prolonged gastric emptying, reduced pancreatic exocrine secretion, and decreased food intake [76, 77]. Furthermore, subcutaneous administration of OXM decreased body weight in overweight and obese individuals [78]. However, the effect of exogenous OXM on glycemic control in diabetic subjects has not been assessed.
Similar to GLP-1 and PYY, bariatric surgeries that accelerate the delivery of enteral nutrients to distal intestine should result in an increase in OXM levels. One recent study by Laferrère et al. observed a marked increase in OXM levels 1 month after RYGB surgery in morbidly obese women with T2D [79].
4.5. Peptide YY (PYY)
Peptide YY is a 36 aminoacid peptide, member of the pancreatic polypeptide family, secreted by the L cells of the terminal ileum and colon postprandially in response to food [80]. It circulates in two endogenous forms: PYY(1–36) and PYY(3–36) with the latter constituting the main circulating form [81]. PYY(3–36) binds to the neuropeptide Y subtype 2 receptor (NPY2) in the hypothalamus and decreases appetite and food intake as seen in rodents and humans when infused peripherally [82, 83]. Chronic intravenous administration of PYY in obese rodents resulted in a dose-dependent weight reduction [84]. PYY(3–36) infusion also decreased ghrelin levels [83]. Furthermore, when a selective NPY2 polyethylene glycol-conjugated (PEGylated) peptide agonist was infused in diet-induced obese (DIO) mice, improvements in glucose disposal as well as in plasma insulin and glucose levels were observed [85].
Similar to GLP-1, PYY levels are low in obesity [86, 87] and at least a blunted response to a meal has been described in T2D. Levels increase after RYGB surgery in both obese and diabetic subjects and may account for the added beneficial satiety and metabolic effects of this procedure [35, 39, 40, 51, 56, 57, 59, 88]. A summary of the studies is presented in Table S1 (see Table S1 in supplementary materials available online at doi:10.5402/2012/504756).
4.6. Amylin
Amylin is a 37 aminoacid peptide cosecreted with insulin from pancreatic beta cells. It plays a role in glucose homeostasis by slowing gastric emptying [89], suppressing glucagon postprandial secretion and decreasing food intake [90, 91]. Furthermore, amylin has been found to have a synergistic effect with leptin on eating, body weight, and body adiposity and a synergistic effect with PYY in controlling food intake [92, 93]. A state of amylin deficiency has been observed in diabetes as seen in rats with streptozotocin-induced B-cell damage and in the spontaneously diabetic BB Wistar rats [94] as well as in humans [95]. Therefore, as with insulin, secretion of amylin requires the presence of functioning beta cells. In parallel to the insulin levels, fasting plasma amylin levels are increased in patients with early type T2D and obesity, suggestive of a state of amylin resistance [96]. Consequently, high amylin levels are expected in obese subjects with T2D, and a reduction in their levels with weight loss should be observed in theory.
Studies supportive have shown that male Sprague Dawley obese rats had a significant reduction in plasma amylin levels after RYGB surgery [97]. Similarly, a decrease in amylin levels was reported by Bose et al. in morbidly obese diabetic women at one month after RYGB surgery [98]. Kashyap et al., however, reported no change in fasting and postprandial amylin levels in obese type 2 diabetic subjects up to 4 weeks after RYGB surgery as shown in Table S2 [73].
4.7. Insulin
Insulin is a 53 aminoacid hormone secreted by the beta cells of the pancreas. It increases uptake of glucose into target cells, promotes formation of glycogen, and decreases gluconeogenesis. A reduction in circulating insulin levels has been observed after RYGB surgery with improved insulin sensitivity as measured by homeostasis model assessment of insulin resistance (HOMA-IR). Improvement in insulin resistance has been reported as early as 6 days after RYGB surgery before any major weight loss has occurred [8]. The mechanism behind the early improvement in insulin resistance remains unclear. Caloric restriction early on after RYGB surgery can decrease hepatic glucose production [99] and reduce skeletal muscle insulin resistance [100]. In addition, the changes in adipocytokine and gut hormones profile that ensue following RYGB surgery act simultaneously to variable extents to improve insulin sensitivity.
5. Adipokines
Adipokines are bioactive peptides secreted from adipocytes that have multiple effects on metabolism with currently more than 50 adipokines identified [101]. The effect of these adipocyte-secreted factors on glucose homeostasis has been better elucidated in recent years. Both leptin, one of the first adipokines discovered to influence body fat mass and adiponectin, the most abundant adipocyte-derived protein, have been extensively studied in the regulation of carbohydrate and fat metabolism. Furthermore, favorable changes in their circulating levels after bariatric surgery have been assessed in various studies as described in the following paragraph. Other adipokines such as resistin, visfatin, vaspin, omentin, serum-retinol-binding protein (RBP)-4, chemerin, interleukin (IL)-6, plasminogen activator inhibitor (PAI-1), tumor necrosis factor (TNF), alpha, serum amyloid A, and angiotensinogen may have a role in obesity and T2D. However, data on changes postbariatric surgery are either minimal or nonexistent and were therefore not discussed in this paper.
5.1. Adiponectin
Adiponectin is a 244 aminoacid peptide. It is the most abundant adipokine secreted by the adipose tissue. Reduced levels of adiponectin are seen in obese patients [102]. Adiponectin levels are significantly lower as well in diabetic patients and in those with cardiovascular diseases compared to BMI-matched healthy controls [103, 104]. Studies in several adult populations have shown that adiponectin predicts the development of T2D [105–107]. Adiponectin circulates as three oligomeric isoforms: low molecular weight, medium molecular weight, and high molecular weight isoforms. The HMW adiponectin represents the major active form mediating the favorable metabolic effects of adiponectin [108]. Adiponectin regulates insulin sensitivity by increasing fatty acid oxidation, stimulating glucose uptake, and reducing hepatic gluconeogenesis [109]. An increase in adiponectin levels is observed with weight loss, and this increase is paralleled by an improved insulin resistance [110].
After RYGB surgery, an increase in adiponectin levels has been reported as shown in Table S3 [111–119].
5.2. Leptin
Leptin is a 167 aminoacid peptide secreted primarily by the adipose tissue and circulates at levels proportional to body fat. Leptin regulates appetite, energy expenditure, and body weight [120]. An increase in body fat is associated with an increase in leptin levels that act to decrease food intake. However, the elevated levels of leptin seen in obese individuals do not effectively suppress appetite because of an underlying resistance to the hormone [121]. Theories for leptin resistance suggest a defect in blood brain barrier transport of leptin induced by high-fat diets and abnormalities in leptin receptor signaling [122–124]. The effects of leptin on glucose homeostasis are still unclear. Leptin has been shown to enhance glucose uptake in skeletal muscles, reduce hepatic glucose output, increase fatty acid oxidation, and decrease insulin secretion by pancreatic beta cells [125].
Serum leptin levels have been shown to be reduced after RYGB surgery in several studies as presented in Table S4 [38, 57, 60, 110, 112, 115, 117, 126–130]. Whether bariatric surgery results in an improvement in the leptin-resistant state remains to be determined. However, the favorable changes in leptin and adiponectin levels after RYGB surgery are similarly seen with weight loss from other bariatric surgery procedures [131] as well as from pharmacological [132] and dietary methods [133, 134] suggesting that these changes are more related to fat loss rather than the RYGB surgery itself.
6. Discussion
Studies evaluating hormonal changes after RYGB surgery have shown an overall positive change in hormones, favoring glycemic control. The orexigenic peptide ghrelin is reduced, while the anorexigenic GLP-1, oxyntomodulin, and PYY are increased. Hormones such as leptin, amylin, GIP, and insulin, to which a suggested state of resistance is observed in obesity and T2D tend to decrease, favor a restored homeostasis. Similarly, a change favoring improved insulin sensitivity with increased adiponectin is seen (Figure 2). A summary of the changes of all the peptides, along with their effect on glycemia and appetite is presented in Figure 3.
Figure 2.

Changes in gut-related peptides post-RYGB surgery.
Figure 3.

Summary of changes in peptides after RYGB surgery and their effects on glycemia and appetite. *Very few studies. **Hormonal levels decrease but glycemia improves due to improved sensitivity.
Despite the overall findings, there remain certain inconsistencies in the results which can be due to the following factors: some studies lacked an appropriate control group and merely assessed changes before and after RYGB surgery. In the few prospective controlled studies, the follow-up time did not exceed 2 years. As demonstrated in the Swedish Obese Subjects Study (SOS), short-term observations (<2 years) cannot mirror the long-term effects of bariatric surgery on comorbidities [135].
Sampling time points varied from one study to another. Some assessed fasting hormonal levels, whereas others measured the hormones in the postprandial state. Furthermore, a standardized meal test is lacking and assays used to measure the various hormones and peptides varied among different studies. For example, as previously mentioned ghrelin exists in two forms: acyl ghrelin that has been shown to produce stimulatory effects on food intake and desacyl ghrelin that induces a state of negative energy balance by inhibiting food intake and delaying gastric emptying [21]. Measuring total, acyl, or desacyl ghrelin will potentially give variable results. Therefore, this confounding factor must be taken into consideration. In addition, other potential explanations include the heterogeneity in the populations studied, variability in the method of reporting weight loss, and variability in the surgical techniques. Specific to changes relating to ghrelin, levels can vary depending on differences in the pouch size as well as configuration particularly if the pouch contains more fundic tissue. Variations in technique are widely noted among different surgeons. They are also noted within the same surgeon's experience as differences in patient's anatomy, body habitus, and effect of prior operations dictate modifications such as lengthening or shortening the pouch [7, 136]. The stoma diameter is important in determining how fast food is delivered to the small intestine and may play a role in the hormonal changes described above. Moreover, the length of the AL and BPL is not standardized and might have an impact on one or more of the gut incretins. Finally, one important factor not taken into account in most studies is the lack of standardized use of antidiabetic medications which can influence metabolites.
Even after consistent documentation of the hormonal changes, an important question remains in establishing the relationship of these alterations to metabolic control. Is the overall favorable hormonal milieu a result of the negative energy state or a causality of it? It may prove difficult to settle this point. However, controlled studies in the immediate postoperative phase, within one day to one week, would be helpful. Except for one study which measured ghrelin levels as early as two hours postoperatively [34], the vast majority obtain their first measurement two to three weeks postoperatively. Furthermore, comparison of changes following very low-caloric diets similar in intake to the immediate post-RYGB phase could prove interesting. These are lacking and in practice may be difficult to conduct.
7. Conclusion
In summary, in addition to the significant and sustained weight reduction achieved by RYGB surgery, improvement in obesity comorbidities, insulin resistance, and glycemic control is noted. This amelioration is attributed, at least partly, to an alteration in gut peptide release and adipokines. The timing and exact changes of these hormones, as well as their etiologic link to metabolic control postsurgery need to be better established.
Thus, long-term controlled studies and additional research focusing on the very early phase post-RYGB are required for a comprehensive appraisal of the mechanisms behind T2D and its control. These advances will help identify new targets for pharmacological treatment of diabetes.
Supplementary Material
We have provided 3 supplementary tables (Table S1, S3, and S4) illustrating the changes in the following hormones PYY, adiponectin and leptin after RYGB surgery that are consistent among the various studies. Table S2 shows the only two studies looking at the changes in amylin after RYGB surgery.
Abbreviations
- AL:
Alimentary limb
- BPL:
Biliopancreatic limb
- DPPIV:
Dipeptidyl peptidase IV
- GH:
Growth hormone
- GHSR1:
Growth hormone secretagogue receptor 1
- GIP:
Gastric inhibitory polypeptide
- GLP-1:
Glucagon-like peptide-1
- NPY2:
Neuropeptide Y subtype 2
- OXM:
Oxyntomodulin
- PAI-1:
Plasminogen activator inhibitor
- PYY:
Peptide YY
- RBP-4:
Retinol-binding protein 4
- RYGB:
Roux-en-y gastric bypass
- T2D:
Type 2 diabetes.
References
- 1. Obesity and Overweight, 2011, http://www.who.int/mediacentre/factsheets/fs311/en/
- 2.Steinbrook R. Surgery for severe obesity. The New England Journal of Medicine. 2004;350(11):1075–1079. doi: 10.1056/NEJMp048029. [DOI] [PubMed] [Google Scholar]
- 3.Pinkney JH, Sjöström CD, Gale EAM. Should surgeons treat diabetes in severely obese people? The Lancet. 2001;357(9265):1357–1359. doi: 10.1016/S0140-6736(00)04524-4. [DOI] [PubMed] [Google Scholar]
- 4.Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–1737. doi: 10.1001/jama.292.14.1724. [DOI] [PubMed] [Google Scholar]
- 5.Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. American Journal of Medicine. 2009;122(3):248–256. doi: 10.1016/j.amjmed.2008.09.041. [DOI] [PubMed] [Google Scholar]
- 6.Do Rego Furtado LC. Procedure and outcomes of Roux-en-Y gastric bypass. British Journal of Nursing. 2010;19(5):307–313. doi: 10.12968/bjon.2010.19.5.47083. [DOI] [PubMed] [Google Scholar]
- 7.Buchwald H, Buchwald JN. Evolution of operative procedures for the management of morbid obesity 1950-2000. Obesity Surgery. 2002;12(5):705–717. doi: 10.1381/096089202321019747. [DOI] [PubMed] [Google Scholar]
- 8.Wickremesekera K, Miller G, DeSilva Naotunne T, Knowles G, Stubbs RS. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obesity Surgery. 2005;15(4):474–481. doi: 10.1381/0960892053723402. [DOI] [PubMed] [Google Scholar]
- 9.Kelley DE, Wing R, Buonocore C, Sturis J, Polonsky K, Fitzsimmons M. Relative effects of calorie restriction and weight loss in noninsulin- dependent diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism. 1993;77(5):1287–1293. doi: 10.1210/jcem.77.5.8077323. [DOI] [PubMed] [Google Scholar]
- 10.Henry RR, Scheaffer L, Olefsky JM. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism. 1985;61(5):917–925. doi: 10.1210/jcem-61-5-917. [DOI] [PubMed] [Google Scholar]
- 11.Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. The Journal of Clinical Endocrinology and Metabolism. 2004;89(6):2608–2615. doi: 10.1210/jc.2004-0433. [DOI] [PubMed] [Google Scholar]
- 12.Karra E, Yousseif A, Batterham RL. Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery. Trends in Endocrinology and Metabolism. 2010;21(6):337–344. doi: 10.1016/j.tem.2010.01.006. [DOI] [PubMed] [Google Scholar]
- 13.Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. International Journal of Obesity. 2009;33(supplement 1):S33–S40. doi: 10.1038/ijo.2009.15. [DOI] [PubMed] [Google Scholar]
- 14.Knop FK. Resolution of type 2 diabetes following gastric bypass surgery: involvement of gut-derived glucagon and glucagonotropic signalling? Diabetologia. 2009;52(11):2270–2276. doi: 10.1007/s00125-009-1511-8. [DOI] [PubMed] [Google Scholar]
- 15.Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Annals of Surgery. 2006;244(5):741–749. doi: 10.1097/01.sla.0000224726.61448.1b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141(11):4255–4261. doi: 10.1210/endo.141.11.7757. [DOI] [PubMed] [Google Scholar]
- 17.Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–1719. doi: 10.2337/diabetes.50.8.1714. [DOI] [PubMed] [Google Scholar]
- 18.Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochemical and Biophysical Research Communications. 2000;279(3):909–913. doi: 10.1006/bbrc.2000.4039. [DOI] [PubMed] [Google Scholar]
- 19.Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141(11):4325–4328. doi: 10.1210/endo.141.11.7873. [DOI] [PubMed] [Google Scholar]
- 20.Broglio F, Gottero C, Prodam F, et al. Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. The Journal of Clinical Endocrinology and Metabolism. 2004;89(6):3062–3065. doi: 10.1210/jc.2003-031964. [DOI] [PubMed] [Google Scholar]
- 21.Asakawa A, Inui A, Fujimiya M, et al. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut. 2005;54(1):18–24. doi: 10.1136/gut.2004.038737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Takaya K, Ariyasu H, Kanamoto N, et al. Ghrelin strongly stimulates growth hormone (GH) release in humans. The Journal of Clinical Endocrinology and Metabolism. 2000;85(12):4908–4911. doi: 10.1210/jcem.85.12.7167. [DOI] [PubMed] [Google Scholar]
- 23.Nagaya N, Kojima M, Uematsu M, et al. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. American Journal of Physiology. 2001;280(5):R1483–R1487. doi: 10.1152/ajpregu.2001.280.5.R1483. [DOI] [PubMed] [Google Scholar]
- 24.Ott V, Fasshauer M, Dalski A, et al. Direct peripheral effects of ghrelin include suppression of adiponectin expression. Hormone and Metabolic Research. 2002;34(11-12):640–645. doi: 10.1055/s-2002-38261. [DOI] [PubMed] [Google Scholar]
- 25.Murata M, Okimura Y, Iida K, et al. Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. The Journal of Biological Chemistry. 2002;277(7):5667–5674. doi: 10.1074/jbc.M103898200. [DOI] [PubMed] [Google Scholar]
- 26.Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. The Journal of Clinical Endocrinology and Metabolism. 2002;87(6):2988–2991. doi: 10.1210/jcem.87.6.8739. [DOI] [PubMed] [Google Scholar]
- 27.Volante M, Allìa E, Gugliotta P, et al. Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. The Journal of Clinical Endocrinology and Metabolism. 2002;87(3):1300–1308. doi: 10.1210/jcem.87.3.8279. [DOI] [PubMed] [Google Scholar]
- 28.Broglio F, Arvat E, Benso A, et al. Ghrelin, a natural gh secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. The Journal of Clinical Endocrinology and Metabolism. 2001;86(10):5083–5086. doi: 10.1210/jcem.86.10.8098. [DOI] [PubMed] [Google Scholar]
- 29.Damjanovic SS, Lalic NM, Pesko PM, et al. Acute effects of ghrelin on insulin secretion and glucose disposal rate in gastrectomized patients. The Journal of Clinical Endocrinology and Metabolism. 2006;91(7):2574–2581. doi: 10.1210/jc.2005-1482. [DOI] [PubMed] [Google Scholar]
- 30.Heijboer AC, van den Hoek AM, Parlevliet ET, et al. Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice. Diabetologia. 2006;49(4):732–738. doi: 10.1007/s00125-006-0138-2. [DOI] [PubMed] [Google Scholar]
- 31.Barazzoni R, Zanetti M, Cattin MR, et al. Ghrelin enhances in vivo skeletal muscle but not liver AKT signaling in rats. Obesity. 2007;15(11):2614–2623. doi: 10.1038/oby.2007.313. [DOI] [PubMed] [Google Scholar]
- 32.Lin E, Gletsu N, Fugate K, et al. The effects of gastric surgery on systemic ghrelin levels in the morbidly obese. Archives of Surgery. 2004;139(7):780–784. doi: 10.1001/archsurg.139.7.780. [DOI] [PubMed] [Google Scholar]
- 33.Geloneze B, Tambascia MA, Pilla VF, Geloneze SR, Repetto EM, Pareja JC. Ghrelin: a gut-brain hormone. Effect of gastric bypass surgery. Obesity Surgery. 2003;13(1):17–22. doi: 10.1381/096089203321136539. [DOI] [PubMed] [Google Scholar]
- 34.Couce ME, Cottam D, Esplen J, Schauer P, Burguera B. Is ghrelin the culprit for weight loss after gastric bypass surgery? A negative answer. Obesity Surgery. 2006;16(7):870–878. doi: 10.1381/096089206777822151. [DOI] [PubMed] [Google Scholar]
- 35.Morínigo R, Vidal J, Lacy AM, Delgado S, Casamitjana R, Gomis R. Circulating peptide YY, weight loss, and glucose homeostasis after gastric bypass surgery in morbidly obese subjects. Annals of Surgery. 2008;247(2):270–275. doi: 10.1097/SLA.0b013e31815f6e77. [DOI] [PubMed] [Google Scholar]
- 36.Foschi D, Corsi F, Colombo F, et al. Different effects of vertical banded gastroplasty and Roux-en-Y gastric bypass on meal inhibition of ghrelin secretion in morbidly obese patients. Journal of Investigative Surgery. 2008;21(2):77–81. doi: 10.1080/08941930701883624. [DOI] [PubMed] [Google Scholar]
- 37.Frühbeck G, Rotellar F, Hernández-Lizoain JL, et al. Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obesity Surgery. 2004;14(9):1208–1215. doi: 10.1381/0960892042386904. [DOI] [PubMed] [Google Scholar]
- 38.Frühbeck G, Diez-Caballero A, Gil MJ, et al. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obesity Surgery. 2004;14(5):606–612. doi: 10.1381/096089204323093363. [DOI] [PubMed] [Google Scholar]
- 39.Oliván B, Teixeira J, Bose M, et al. Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Annals of Surgery. 2009;249(6):948–953. doi: 10.1097/SLA.0b013e3181a6cdb0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Annals of Surgery. 2008;247(3):401–407. doi: 10.1097/SLA.0b013e318156f012. [DOI] [PubMed] [Google Scholar]
- 41.Rodieux F, Giusti V, D’Alessio DA, Suter M, Tappy L. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity. 2008;16(2):298–305. doi: 10.1038/oby.2007.83. [DOI] [PubMed] [Google Scholar]
- 42.Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. The New England Journal of Medicine. 1992;326(20):1316–1322. doi: 10.1056/NEJM199205143262003. [DOI] [PubMed] [Google Scholar]
- 43.Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144(12):5149–5158. doi: 10.1210/en.2003-0323. [DOI] [PubMed] [Google Scholar]
- 44.Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. The Journal of Clinical Investigation. 1998;101(3):515–520. doi: 10.1172/JCI990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Holst JJ. The physiology of glucagon-like peptide 1. Physiological Reviews. 2007;87(4):1409–1439. doi: 10.1152/physrev.00034.2006. [DOI] [PubMed] [Google Scholar]
- 46.Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study. The Lancet. 2002;359(9309):824–830. doi: 10.1016/S0140-6736(02)07952-7. [DOI] [PubMed] [Google Scholar]
- 47.Vilsbøll T, Krarup T, Madsbad S, Holst J. Defective amplification of the late phase insulin response to glucose by gip in obese type ii diabetic patients. Diabetologia. 2002;45(8):1111–1119. doi: 10.1007/s00125-002-0878-6. [DOI] [PubMed] [Google Scholar]
- 48.Vilsbøll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism. 2003;88(6):2706–2713. doi: 10.1210/jc.2002-021873. [DOI] [PubMed] [Google Scholar]
- 49.Laferrère B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism. 2008;93(7):2479–2485. doi: 10.1210/jc.2007-2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Laferrère B, Heshka S, Wang K, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30(7):1709–1716. doi: 10.2337/dc06-1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Morínigo R, Moizé V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. The Journal of Clinical Endocrinology and Metabolism. 2006;91(5):1735–1740. doi: 10.1210/jc.2005-0904. [DOI] [PubMed] [Google Scholar]
- 52.Morínigo R, Lacy AM, Casamitjana R, Delgado S, Gomis R, Vidal J. GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese subjects. Obesity Surgery. 2006;16(12):1594–1601. doi: 10.1381/096089206779319338. [DOI] [PubMed] [Google Scholar]
- 53.De Carvalho CP, Marin DM, De Souza AL, et al. GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obesity Surgery. 2009;19(3):313–320. doi: 10.1007/s11695-008-9678-5. [DOI] [PubMed] [Google Scholar]
- 54.Peterli R, Wölnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Annals of Surgery. 2009;250(2):234–241. doi: 10.1097/SLA.0b013e3181ae32e3. [DOI] [PubMed] [Google Scholar]
- 55.Le Roux CW, Aylwin SJB, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Annals of Surgery. 2006;243(1):108–114. doi: 10.1097/01.sla.0000183349.16877.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Annals of Surgery. 2007;246(5):780–785. doi: 10.1097/SLA.0b013e3180caa3e3. [DOI] [PubMed] [Google Scholar]
- 57.Borg CM, Le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJB. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. British Journal of Surgery. 2006;93(2):210–215. doi: 10.1002/bjs.5227. [DOI] [PubMed] [Google Scholar]
- 58.Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surgery for Obesity and Related Diseases. 2007;3(6):597–601. doi: 10.1016/j.soard.2007.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Reinehr T, Roth CL, Schernthaner GH, Kopp HP, Kriwanek S, Schernthaner G. Peptide YY and glucagon-like peptide-1 in morbidly obese patients before and after surgically induced weight loss. Obesity Surgery. 2007;17(12):1571–1577. doi: 10.1007/s11695-007-9323-8. [DOI] [PubMed] [Google Scholar]
- 60.Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Annals of Surgery. 2004;240(2):236–242. doi: 10.1097/01.sla.0000133117.12646.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Clements RH, Gonzalez QH, Long CI, Wittert G, Laws HL. Hormonal changes after Roux-en Y gastric bypass for morbid obesity and the control of type-II diabetes mellitus. American Surgeon. 2004;70(1):1–4. [PubMed] [Google Scholar]
- 62.Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. The Journal of Clinical Endocrinology and Metabolism. 1973;37(5):826–828. doi: 10.1210/jcem-37-5-826. [DOI] [PubMed] [Google Scholar]
- 63.Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Hörsch D. Glucose-dependent insulinotropic polypeptide is a growth factor for β (INS-1) cells by pleiotropic signaling. Molecular Endocrinology. 2001;15(9):1559–1570. doi: 10.1210/mend.15.9.0688. [DOI] [PubMed] [Google Scholar]
- 64.Chia CW, Carlson OD, Kim W, et al. Exogenous glucose-dependent insulinotropic polypeptide worsens postprandial hyperglycemia in type 2 diabetes. Diabetes. 2009;58(6):1342–1349. doi: 10.2337/db08-0958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Lynn FC, Pamir N, Ng EHC, McIntosh CHS, Kieffer TJ, Pederson RA. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes. 2001;50(5):1004–1011. doi: 10.2337/diabetes.50.5.1004. [DOI] [PubMed] [Google Scholar]
- 66.Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes. Diabetes. 1979;28(12):1141–1142. doi: 10.2337/diab.28.12.1141. [DOI] [PubMed] [Google Scholar]
- 67.Oben J, Morgan L, Fletcher J, Marks V. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. Journal of Endocrinology. 1991;130(2):267–272. doi: 10.1677/joe.0.1300267. [DOI] [PubMed] [Google Scholar]
- 68.Miyawaki K, Yamada Y, Yano H, et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(26):14843–14847. doi: 10.1073/pnas.96.26.14843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. The Journal of Biological Chemistry. 2008;283(26):18365–18376. doi: 10.1074/jbc.M710466200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Irwin N, McClean PL, O’Harte FPM, Gault VA, Harriott P, Flatt PR. Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice. Diabetologia. 2007;50(7):1532–1540. doi: 10.1007/s00125-007-0692-2. [DOI] [PubMed] [Google Scholar]
- 71.Flatt PR. Dorothy hodgkin lecture 2008 gastric inhibitory polypeptide (GIP) revisited: a new therapeutic target for obesity-diabetes? Diabetic Medicine. 2008;25(7):759–764. doi: 10.1111/j.1464-5491.2008.02455.x. [DOI] [PubMed] [Google Scholar]
- 72.Whitson BA, Leslie DB, Kellogg TA, et al. Entero-endocrine changes after gastric bypass in diabetic and nondiabetic patients: a preliminary study. Journal of Surgical Research. 2007;141(1):31–39. doi: 10.1016/j.jss.2007.02.022. [DOI] [PubMed] [Google Scholar]
- 73.Kashyap SR, Daud S, Kelly KR, et al. Acute effects of gastric bypass versus gastric restrictive surgery on β-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. International Journal of Obesity. 2010;34(3):462–471. doi: 10.1038/ijo.2009.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Ghatei MA, Uttenthal LO, Christofides ND. Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. The Journal of Clinical Endocrinology and Metabolism. 1983;57(3):488–495. doi: 10.1210/jcem-57-3-488. [DOI] [PubMed] [Google Scholar]
- 75.Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology. 2004;145(6):2687–2695. doi: 10.1210/en.2003-1338. [DOI] [PubMed] [Google Scholar]
- 76.Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Digestive Diseases and Sciences. 1989;34(9):1411–1419. doi: 10.1007/BF01538078. [DOI] [PubMed] [Google Scholar]
- 77.Cohen MA, Ellis SM, Le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. The Journal of Clinical Endocrinology and Metabolism. 2003;88(10):4696–4701. doi: 10.1210/jc.2003-030421. [DOI] [PubMed] [Google Scholar]
- 78.Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54(8):2390–2395. doi: 10.2337/diabetes.54.8.2390. [DOI] [PubMed] [Google Scholar]
- 79.Laferrère B, Swerdlow N, Bawa B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism. 2010;95(8):4072–4076. doi: 10.1210/jc.2009-2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Adrian TE, Ferri GL, Bacarese-Hamilton AJ. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–1077. doi: 10.1016/0016-5085(85)90211-2. [DOI] [PubMed] [Google Scholar]
- 81.Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of Peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regulatory Peptides. 1994;51(2):151–159. doi: 10.1016/0167-0115(94)90204-6. [DOI] [PubMed] [Google Scholar]
- 82.Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Annals of the New York Academy of Sciences. 2003;994:162–168. doi: 10.1111/j.1749-6632.2003.tb03176.x. [DOI] [PubMed] [Google Scholar]
- 83.Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. The New England Journal of Medicine. 2003;349(10):941–948. doi: 10.1056/NEJMoa030204. [DOI] [PubMed] [Google Scholar]
- 84.Pittner RA, Moore CX, Bhavsar SP, et al. Effects of PYY[3-36] in rodent models of diabetes and obesity. International Journal of Obesity. 2004;28(8):963–971. doi: 10.1038/sj.ijo.0802696. [DOI] [PubMed] [Google Scholar]
- 85.van den Hoek AM, Heijboer AC, Corssmit EPM, et al. PYY3-36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes. 2004;53(8):1949–1952. doi: 10.2337/diabetes.53.8.1949. [DOI] [PubMed] [Google Scholar]
- 86.Le Roux CW, Batterham RL, Aylwin SJB, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147(1):3–8. doi: 10.1210/en.2005-0972. [DOI] [PubMed] [Google Scholar]
- 87.Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, Reinehr T. Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. The Journal of Clinical Endocrinology and Metabolism. 2005;90(12):6386–6391. doi: 10.1210/jc.2005-1357. [DOI] [PubMed] [Google Scholar]
- 88.Valderas JP, Irribarra V, Boza C, et al. Medical and surgical treatments for obesity have opposite effects on peptide YY and appetite: a prospective study controlled for weight loss. The Journal of Clinical Endocrinology and Metabolism. 2010;95(3):1069–1075. doi: 10.1210/jc.2009-0983. [DOI] [PubMed] [Google Scholar]
- 89.Young AA, Gedulin BR, Rink TJ. Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7-36)NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism. 1996;45(1):1–3. doi: 10.1016/s0026-0495(96)90192-4. [DOI] [PubMed] [Google Scholar]
- 90.Chance WT, Balasubramaniam A, Zhang FS, Wimalawansa SJ, Fischer JE. Anorexia following the intrahypothalamic administration of amylin. Brain Research. 1991;539(2):352–354. doi: 10.1016/0006-8993(91)91644-g. [DOI] [PubMed] [Google Scholar]
- 91.Morley JE, Flood JF, Horowitz M, Morley PMK, Walter MJ. Modulation of food intake by peripherally administered amylin. American Journal of Physiology. 1994;267(1):R178–R184. doi: 10.1152/ajpregu.1994.267.1.R178. [DOI] [PubMed] [Google Scholar]
- 92.Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD. Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity. 2010;18(1):21–26. doi: 10.1038/oby.2009.187. [DOI] [PubMed] [Google Scholar]
- 93.Roth JD, Coffey T, Jodka CM, et al. Combination therapy with amylin and peptide YY[3-36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology. 2007;148(12):6054–6061. doi: 10.1210/en.2007-0898. [DOI] [PubMed] [Google Scholar]
- 94.Bretherton-Watt D, Ghatei MA, Legon S, Jamal H, Suda K, Bloom SR. Depletion of islet amyloid polypeptide in the spontaneously diabetic (BB) Wistar rat. Journal of Molecular Endocrinology. 1991;6(1):3–7. doi: 10.1677/jme.0.0060003. [DOI] [PubMed] [Google Scholar]
- 95.Koda JE, Fineman M, Rink TJ, Dailey GE, Muchmore DB, Linarelli LG. Amylin concentrations and glucose control. The Lancet. 1992;339(8802):1179–1180. doi: 10.1016/0140-6736(92)90785-2. [DOI] [PubMed] [Google Scholar]
- 96.Pieber TR, Roitelman J, Lee Y, Luskey KL, Stein DT. Direct plasma radioimmunoassay for rat amylin-(1-37): concentrations with acquired and genetic obesity. American Journal of Physiology. 1994;267(1):E156–E164. doi: 10.1152/ajpendo.1994.267.1.E156. [DOI] [PubMed] [Google Scholar]
- 97.Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR. Meal-induced hormone responses in a rat model of roux-en-Y gastric bypass surgery. Endocrinology. 2010;151(4):1588–1597. doi: 10.1210/en.2009-1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Bose M, Teixeira J, Olivan B, et al. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. Journal of Diabetes. 2010;2(1):47–55. doi: 10.1111/j.1753-0407.2009.00064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Jazet IM, Pijl H, Frölich M, Romijn JA, Meinders AE. Two days of a very low calorie diet reduces endogenous glucose production in obese type 2 diabetic patients despite the withdrawal of blood glucose-lowering therapies including insulin. Metabolism. 2005;54(6):705–712. doi: 10.1016/j.metabol.2004.12.015. [DOI] [PubMed] [Google Scholar]
- 100.Lara-Castro C, Newcomer BR, Rowell J, et al. Effects of short-term very low-calorie diet on intramyocellular lipid and insulin sensitivity in nondiabetic and type 2 diabetic subjects. Metabolism. 2008;57(1):1–8. doi: 10.1016/j.metabol.2007.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. British Journal of Nutrition. 2004;92(3):347–355. doi: 10.1079/bjn20041213. [DOI] [PubMed] [Google Scholar]
- 102.Peake PW, Kriketos AD, Campbell LV, Shen Y, Charlesworth JA. The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. European Journal of Endocrinology. 2005;153(3):409–417. doi: 10.1530/eje.1.01978. [DOI] [PubMed] [Google Scholar]
- 103.Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000;20(6):1595–1599. doi: 10.1161/01.atv.20.6.1595. [DOI] [PubMed] [Google Scholar]
- 104.Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100(25):2473–2476. doi: 10.1161/01.cir.100.25.2473. [DOI] [PubMed] [Google Scholar]
- 105.Choi KM, Lee J, Lee KW, et al. Serum adiponectin concentrations predict the developments of type 2 diabetes and the metabolic syndrome in elderly Koreans. Clinical Endocrinology. 2004;61(1):75–80. doi: 10.1111/j.1365-2265.2004.02063.x. [DOI] [PubMed] [Google Scholar]
- 106.Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. The Lancet. 2002;360(9326):57–58. doi: 10.1016/S0140-6736(02)09335-2. [DOI] [PubMed] [Google Scholar]
- 107.Daimon M, Oizumi T, Saitoh T, et al. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: the Funagata study. Diabetes Care. 2003;26(7):2015–2020. doi: 10.2337/diacare.26.7.2015. [DOI] [PubMed] [Google Scholar]
- 108.Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin: implications for metabolic regulation and bioactivity. The Journal of Biological Chemistry. 2003;278(11):9073–9085. doi: 10.1074/jbc.M207198200. [DOI] [PubMed] [Google Scholar]
- 109.Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine. 2002;8(11):1288–1295. doi: 10.1038/nm788. [DOI] [PubMed] [Google Scholar]
- 110.Faraj M, Havel PJ, Phélis S, Blank D, Sniderman AD, Cianflone K. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. The Journal of Clinical Endocrinology and Metabolism. 2003;88(4):1594–1602. doi: 10.1210/jc.2002-021309. [DOI] [PubMed] [Google Scholar]
- 111.Serra A, Granada ML, Romero R, et al. The effect of bariatric surgery on adipocytokines, renal parameters and other cardiovascular risk factors in severe and very severe obesity: 1-year follow-up. Clinical Nutrition. 2006;25(3):400–408. doi: 10.1016/j.clnu.2005.11.014. [DOI] [PubMed] [Google Scholar]
- 112.Whitson BA, Leslie DB, Kellogg TA, et al. Adipokine response in diabetics and nondiabetics following the Roux-en-Y gastric bypass: a preliminary study. Journal of Surgical Research. 2007;142(2):295–300. doi: 10.1016/j.jss.2007.03.036. [DOI] [PubMed] [Google Scholar]
- 113.De La Torre NG, Rubio MA, Bordiú E, et al. Effects of weight loss after bariatric surgery for morbid obesity on vascular endothelial growth factor-A, adipocytokines, and insulin. The Journal of Clinical Endocrinology and Metabolism. 2008;93(11):4276–4281. doi: 10.1210/jc.2007-1370. [DOI] [PubMed] [Google Scholar]
- 114.Trakhtenbroit MA, Leichman JG, Algahim MF, et al. Body Weight, Insulin Resistance, and Serum Adipokine Levels 2 Years after 2 Types of Bariatric Surgery. American Journal of Medicine. 2009;122(5):435–442. doi: 10.1016/j.amjmed.2008.10.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Holdstock C, Engström BE, Öhrvall M, Lind L, Sundbom M, Karlsson FA. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. The Journal of Clinical Endocrinology and Metabolism. 2003;88(7):3177–3183. doi: 10.1210/jc.2002-021734. [DOI] [PubMed] [Google Scholar]
- 116.Swarbrick MM, Austrheim-Smith IT, Stanhope KL, et al. Circulating concentrations of high-molecular-weight adiponectin are increased following Roux-en-Y gastric bypass surgery. Diabetologia. 2006;49(11):2552–2558. doi: 10.1007/s00125-006-0452-8. [DOI] [PubMed] [Google Scholar]
- 117.Lin E, Phillips LS, Ziegler TR, et al. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes. 2007;56(3):735–742. doi: 10.2337/db06-1161. [DOI] [PubMed] [Google Scholar]
- 118.Vilarrasa N, Vendrell J, Sánchez-Santos R, et al. Effect of weight loss induced by gastric bypass on proinflammatory interleukin-18, soluble tumour necrosis factor-α receptors, C-reactive protein and adiponectin in morbidly obese patients. Clinical Endocrinology. 2007;67(5):679–686. doi: 10.1111/j.1365-2265.2007.02945.x. [DOI] [PubMed] [Google Scholar]
- 119.Coughlin CC, Finck BN, Eagon JC, et al. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity. 2007;15(3):640–645. doi: 10.1038/oby.2007.556. [DOI] [PubMed] [Google Scholar]
- 120.Hims-Hagen J. Physiological roles of the leptin endocrine system: differences between mice and humans. Critical Reviews in Clinical Laboratory Sciences. 1999;36(6):575–655. doi: 10.1080/10408369991239259. [DOI] [PubMed] [Google Scholar]
- 121.Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. The New England Journal of Medicine. 1996;334(5):292–295. doi: 10.1056/NEJM199602013340503. [DOI] [PubMed] [Google Scholar]
- 122.Van Heek M, Compton DS, France CF, et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. The Journal of Clinical Investigation. 1997;99(3):385–390. doi: 10.1172/JCI119171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. The Journal of Clinical Investigation. 2000;105(12):1827–1832. doi: 10.1172/JCI9842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Banks WA, Coon AB, Robinson SM, et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes. 2004;53(5):1253–1260. doi: 10.2337/diabetes.53.5.1253. [DOI] [PubMed] [Google Scholar]
- 125.Yildiz BO, Haznedaroglu IC. Rethinking leptin and insulin action: therapeutic opportunities for diabetes. International Journal of Biochemistry and Cell Biology. 2006;38(5-6):820–830. doi: 10.1016/j.biocel.2005.09.013. [DOI] [PubMed] [Google Scholar]
- 126.Molina A, Vendrell J, Gutiérrez C, et al. Insulin resistance, leptin and TNF-α system in morbidly obese women after gastric bypass. Obesity Surgery. 2003;13(4):615–621. doi: 10.1381/096089203322190844. [DOI] [PubMed] [Google Scholar]
- 127.Bobbioni-Harsch E, Morel P, Huber O, et al. Energy economy hampers body weight loss after gastric bypass. The Journal of Clinical Endocrinology and Metabolism. 2000;85(12):4695–4700. doi: 10.1210/jcem.85.12.7083. [DOI] [PubMed] [Google Scholar]
- 128.Das SK, Roberts SB, McCrory MA, et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery 1-4. American Journal of Clinical Nutrition. 2003;78(1):22–30. doi: 10.1093/ajcn/78.1.22. [DOI] [PubMed] [Google Scholar]
- 129.Czupryniak L, Pawlowski M, Kumor A, Szymanski D, Loba J, Strzelczyk J. Predicting maximum Roux-en-Y gastric bypass-induced weight reduction—preoperative plasma leptin or body weight? Obesity Surgery. 2007;17(2):162–167. doi: 10.1007/s11695-007-9042-1. [DOI] [PubMed] [Google Scholar]
- 130.Swarbrick MM, Stanhope KL, Austrheim-Smith IT, et al. Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery. Diabetologia. 2008;51(10):1901–1911. doi: 10.1007/s00125-008-1118-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Kotidis EV, Koliakos GG, Baltzopoulos VG, Ioannidis KN, Yovos JG, Papavramidis ST. Serum ghrelin, leptin and adiponectin levels before and after weight loss: comparison of three methods of treatment—a prospective study. Obesity Surgery. 2006;16(11):1425–1432. doi: 10.1381/096089206778870058. [DOI] [PubMed] [Google Scholar]
- 132.Després J-P, Golay A, Sjöström L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. The New England Journal of Medicine. 2005;353(20):2121–2134. doi: 10.1056/NEJMoa044537. [DOI] [PubMed] [Google Scholar]
- 133.Rolland C, Hession M, Broom I. Effect of weight loss on adipokine. Diabetes, Metabolic Syndrome and Obesity. 2011;4:315–323. doi: 10.2147/DMSO.S22788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Forsythe LK, Wallace JMW, Livingstone MBE. Obesity and inflammation: the effects of weight loss. Nutrition Research Reviews. 2008;21(2):117–133. doi: 10.1017/S0954422408138732. [DOI] [PubMed] [Google Scholar]
- 135.Sjöström L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. The New England Journal of Medicine. 2004;351(26):2683–2693. doi: 10.1056/NEJMoa035622. [DOI] [PubMed] [Google Scholar]
- 136.Akkary E, Sidani S, Boonsiri J, et al. The paradox of the pouch: prompt emptying predicts improved weight loss after laparoscopic Roux-Y gastric bypass. Surgical Endoscopy and Other Interventional Techniques. 2009;23(4):790–794. doi: 10.1007/s00464-008-0069-8. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
We have provided 3 supplementary tables (Table S1, S3, and S4) illustrating the changes in the following hormones PYY, adiponectin and leptin after RYGB surgery that are consistent among the various studies. Table S2 shows the only two studies looking at the changes in amylin after RYGB surgery.
