Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 7;68(Pt 4):o964–o965. doi: 10.1107/S1600536812007386

(Z)-2-(5-Chloro-2-oxoindolin-3-yl­idene)-N-methyl­hydrazinecarbothio­amide

Amna Qasem Ali a,b, Naser Eltaher Eltayeb c,, Siang Guan Teoh a,*, Abdussalam Salhin a, Hoong-Kun Fun d,§
PMCID: PMC3354764  PMID: 22606200

Abstract

In the title compound, C10H9ClN4OS, an intra­molecular N—H⋯O hydrogen-bonding inter­action and an N—H⋯N inter­action generate ring motifs [graph sets S(6) and S(5), respectively]. In the crystal, mol­ecules form a chain through N—H⋯O hydrogen bonds, and these are extended by N—H⋯S hydrogen-bonding inter­actions into an infinite three-dimensional network. The crystal structure also exhibits weak C—H⋯π inter­actions.

Related literature  

For related structures, see: Qasem Ali et al. (2012, 2011a ,b ); Ali et al. (2012). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For cytotoxic and anti­cancer activities of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see Bernstein et al. (1995).graphic file with name e-68-0o964-scheme1.jpg

Experimental  

Crystal data  

  • C10H9ClN4OS

  • M r = 268.72

  • Orthorhombic, Inline graphic

  • a = 6.2558 (1) Å

  • b = 10.1449 (1) Å

  • c = 18.5682 (2) Å

  • V = 1178.42 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.34 × 0.10 × 0.08 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.853, T max = 0.961

  • 16807 measured reflections

  • 4886 independent reflections

  • 4072 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.078

  • S = 1.05

  • 4886 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983), 2074 Friedel pairs

  • Flack parameter: 0.01 (5)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007386/zs2177sup1.cif

e-68-0o964-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007386/zs2177Isup2.hkl

e-68-0o964-Isup2.hkl (239.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007386/zs2177Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯N2 0.88 (2) 2.27 (2) 2.6416 (18) 105.6 (15)
N4—H1N4⋯S1i 0.88 (2) 2.70 (2) 3.4972 (13) 152.2 (16)
N3—H1N3⋯O1 0.86 (2) 2.086 (19) 2.7526 (16) 134.3 (17)
N1—H1N1⋯O1ii 0.81 (2) 2.01 (2) 2.8161 (16) 175 (2)
C3—H3ACg2iii 0.95 2.59 3.38 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (No. 1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

supplementary crystallographic information

Comment

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide (Qasem Ali et al., 2012). In the present paper we describe the single-crystal X-ray diffraction study of title compound, C10H9ClN4OS (Fig. 1).

In this compound, the chain N2/N3/C9/S1/N4/C10 is connected to the nine-membered 5-chloroindolin-2-one ring system at C7. In this chain C7—N2—N3—C9 and C10—N4—C9—S1 torsion angles are -177.77 (13)° and 2.7 (2)°, respectively. The essentially planar conformation of the molecule is maintained by the cyclic intramolecular N3—H1N3···O1 hydrogen-bonding interaction together with the N4—H1N4···N2 interaction [graph sets S(6) and S(5), respectively (Bernstein et al., 1995)] (Table 1).

In the crystal the molecules form chain substructures through intermolecular N1—H1N1···O1 hydrogen bonds and these are extended by N4—H1N4···S1 hydrogen-bonding interactions into an infinite a three-dimensional network (Table 1, Fig. 2). Weak C—H···π interactions are also present [C3—H···Cg2iii = 3.38 Å], where Cg2 is the centroid of the C1—C6 ring. For symmetry code (iii), see Table 1.

Experimental

The Schiff base has been synthesized by refluxing the reaction mixture of a hot ethanolic solution (30 ml) of 5-methyl-3-thiosemicarbazide (0.01 mol) and a hot ethanolic solution (30 ml) of 5-chloroisatin (0.01 mol) for 2 hr. The precipitate formed during reflux was filtered, washed with cold ethanol and recrystallized from hot ethanol. Yield (m.p.): 85% (568.4–569.0 K). The yellow crystals were grown in ethylacetate–DMF (3:1) by slow evaporation at room temperature.

Refinement

Nitrogen bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å (aromatic ring) and C—H = 0.98 Å (methyl group) with Uiso(H) = 1.2Ueq(aromatic C) and Uiso(H) = 1.5Ueq(methyl C). The highest residual electron density peak (0.41 eÅ-3) is located at 0.73 Å from Cl1 and the deepest hole (-0.32 eÅ-3) is located at 0.59 Å from Sl.

Figures

Fig. 1.

Fig. 1.

The molecular structure and the atom-numbering scheme of the title compound, with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H9ClN4OS Dx = 1.515 Mg m3
Mr = 268.72 Melting point = 568.4–569.0 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5715 reflections
a = 6.2558 (1) Å θ = 3.0–34.1°
b = 10.1449 (1) Å µ = 0.49 mm1
c = 18.5682 (2) Å T = 100 K
V = 1178.42 (3) Å3 Needle, yellow
Z = 4 0.34 × 0.10 × 0.08 mm
F(000) = 552

Data collection

Bruker APEXII CCD diffractometer 4886 independent reflections
Radiation source: fine-focus sealed tube 4072 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
φ and ω scans θmax = 34.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→9
Tmin = 0.853, Tmax = 0.961 k = −16→16
16807 measured reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.1624P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
4886 reflections Δρmax = 0.41 e Å3
167 parameters Δρmin = −0.32 e Å3
0 restraints Absolute structure: Flack (1983), 2074 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.30754 (7) 0.94253 (3) 0.877263 (19) 0.02071 (9)
S1 0.74171 (6) 0.27814 (3) 0.785567 (19) 0.01723 (8)
O1 0.15801 (18) 0.26544 (10) 0.93453 (5) 0.0176 (2)
N1 −0.1313 (2) 0.39745 (12) 0.96526 (6) 0.0154 (3)
N2 0.2697 (2) 0.50267 (11) 0.84352 (6) 0.0131 (2)
N3 0.4038 (2) 0.39983 (12) 0.83590 (6) 0.0144 (2)
N4 0.6135 (2) 0.52656 (12) 0.76196 (7) 0.0147 (2)
C1 −0.2019 (3) 0.52525 (13) 0.94808 (7) 0.0138 (3)
C2 −0.3841 (3) 0.58915 (15) 0.97154 (7) 0.0160 (3)
H2A −0.4830 0.5474 1.0029 0.019*
C3 −0.4167 (2) 0.71814 (15) 0.94706 (7) 0.0163 (3)
H3A −0.5411 0.7650 0.9613 0.020*
C4 −0.2680 (3) 0.77827 (13) 0.90194 (7) 0.0148 (3)
C5 −0.0871 (2) 0.71336 (14) 0.87730 (7) 0.0139 (3)
H5A 0.0114 0.7551 0.8458 0.017*
C6 −0.0562 (2) 0.58458 (14) 0.90075 (7) 0.0124 (3)
C7 0.1086 (2) 0.48782 (13) 0.88630 (7) 0.0127 (3)
C8 0.0532 (3) 0.36840 (14) 0.93058 (7) 0.0139 (3)
C9 0.5824 (2) 0.41081 (13) 0.79306 (7) 0.0127 (3)
C10 0.7903 (3) 0.55324 (15) 0.71346 (8) 0.0201 (3)
H10A 0.8041 0.6486 0.7065 0.030*
H10B 0.7634 0.5107 0.6670 0.030*
H10C 0.9228 0.5184 0.7342 0.030*
H1N4 0.516 (4) 0.588 (2) 0.7671 (10) 0.033 (6)*
H1N3 0.383 (3) 0.328 (2) 0.8590 (10) 0.032 (6)*
H1N1 −0.189 (4) 0.3462 (19) 0.9928 (11) 0.035 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0223 (2) 0.01646 (14) 0.02338 (15) 0.00725 (15) −0.00058 (16) 0.00258 (13)
S1 0.01584 (18) 0.01392 (14) 0.02193 (15) 0.00320 (15) 0.00197 (16) −0.00174 (13)
O1 0.0214 (6) 0.0140 (4) 0.0174 (4) 0.0042 (5) −0.0002 (4) 0.0032 (4)
N1 0.0183 (7) 0.0138 (5) 0.0141 (5) −0.0012 (5) 0.0033 (5) 0.0017 (4)
N2 0.0134 (6) 0.0118 (4) 0.0140 (5) 0.0016 (5) −0.0007 (5) −0.0013 (4)
N3 0.0150 (7) 0.0122 (5) 0.0161 (5) 0.0026 (5) 0.0026 (5) 0.0008 (4)
N4 0.0129 (6) 0.0138 (5) 0.0175 (5) 0.0005 (5) 0.0018 (5) 0.0017 (4)
C1 0.0155 (7) 0.0135 (5) 0.0123 (5) −0.0014 (5) −0.0011 (6) −0.0011 (4)
C2 0.0145 (7) 0.0189 (6) 0.0148 (6) −0.0014 (6) 0.0018 (6) −0.0014 (5)
C3 0.0130 (7) 0.0201 (6) 0.0159 (6) 0.0021 (6) −0.0002 (6) −0.0040 (5)
C4 0.0157 (7) 0.0142 (5) 0.0146 (5) 0.0022 (6) −0.0034 (6) −0.0002 (5)
C5 0.0144 (7) 0.0146 (5) 0.0128 (5) 0.0000 (6) 0.0003 (6) 0.0013 (5)
C6 0.0119 (7) 0.0145 (6) 0.0108 (5) −0.0006 (5) −0.0009 (5) −0.0003 (4)
C7 0.0142 (7) 0.0109 (5) 0.0129 (6) 0.0000 (5) −0.0013 (5) 0.0010 (4)
C8 0.0168 (7) 0.0135 (6) 0.0113 (5) −0.0019 (6) −0.0007 (6) 0.0010 (4)
C9 0.0115 (7) 0.0129 (5) 0.0136 (6) 0.0000 (5) −0.0023 (5) −0.0026 (5)
C10 0.0162 (8) 0.0229 (7) 0.0211 (6) −0.0025 (6) 0.0021 (6) 0.0042 (6)

Geometric parameters (Å, º)

Cl1—C4 1.7458 (14) C1—C6 1.402 (2)
S1—C9 1.6806 (14) C2—C3 1.400 (2)
O1—C8 1.2354 (18) C2—H2A 0.9500
N1—C8 1.355 (2) C3—C4 1.392 (2)
N1—C1 1.4062 (18) C3—H3A 0.9500
N1—H1N1 0.81 (2) C4—C5 1.387 (2)
N2—C7 1.292 (2) C5—C6 1.3906 (19)
N2—N3 1.3463 (17) C5—H5A 0.9500
N3—C9 1.376 (2) C6—C7 1.449 (2)
N3—H1N3 0.86 (2) C7—C8 1.5044 (19)
N4—C9 1.3229 (18) C10—H10A 0.9800
N4—C10 1.4520 (19) C10—H10B 0.9800
N4—H1N4 0.88 (2) C10—H10C 0.9800
C1—C2 1.382 (2)
C8—N1—C1 111.11 (12) C4—C5—C6 117.14 (13)
C8—N1—H1N1 122.4 (16) C4—C5—H5A 121.4
C1—N1—H1N1 126.4 (16) C6—C5—H5A 121.4
C7—N2—N3 117.41 (11) C5—C6—C1 120.62 (14)
N2—N3—C9 120.27 (12) C5—C6—C7 132.66 (13)
N2—N3—H1N3 121.0 (14) C1—C6—C7 106.73 (12)
C9—N3—H1N3 118.7 (14) N2—C7—C6 126.15 (12)
C9—N4—C10 123.25 (13) N2—C7—C8 127.55 (13)
C9—N4—H1N4 119.0 (14) C6—C7—C8 106.30 (12)
C10—N4—H1N4 117.5 (14) O1—C8—N1 127.44 (13)
C2—C1—C6 122.18 (13) O1—C8—C7 126.25 (14)
C2—C1—N1 128.31 (14) N1—C8—C7 106.31 (12)
C6—C1—N1 109.52 (13) N4—C9—N3 116.33 (13)
C1—C2—C3 117.14 (14) N4—C9—S1 125.98 (12)
C1—C2—H2A 121.4 N3—C9—S1 117.69 (10)
C3—C2—H2A 121.4 N4—C10—H10A 109.5
C4—C3—C2 120.50 (14) N4—C10—H10B 109.5
C4—C3—H3A 119.7 H10A—C10—H10B 109.5
C2—C3—H3A 119.7 N4—C10—H10C 109.5
C5—C4—C3 122.37 (13) H10A—C10—H10C 109.5
C5—C4—Cl1 118.82 (11) H10B—C10—H10C 109.5
C3—C4—Cl1 118.79 (12)
C7—N2—N3—C9 −177.77 (13) N3—N2—C7—C6 −178.53 (13)
C8—N1—C1—C2 178.80 (14) N3—N2—C7—C8 1.2 (2)
C8—N1—C1—C6 −0.92 (16) C5—C6—C7—N2 −2.2 (3)
C6—C1—C2—C3 −1.2 (2) C1—C6—C7—N2 177.97 (14)
N1—C1—C2—C3 179.15 (13) C5—C6—C7—C8 177.99 (15)
C1—C2—C3—C4 −1.0 (2) C1—C6—C7—C8 −1.83 (15)
C2—C3—C4—C5 2.3 (2) C1—N1—C8—O1 179.09 (15)
C2—C3—C4—Cl1 −176.16 (11) C1—N1—C8—C7 −0.27 (16)
C3—C4—C5—C6 −1.3 (2) N2—C7—C8—O1 2.1 (3)
Cl1—C4—C5—C6 177.14 (11) C6—C7—C8—O1 −178.07 (14)
C4—C5—C6—C1 −0.9 (2) N2—C7—C8—N1 −178.50 (14)
C4—C5—C6—C7 179.33 (14) C6—C7—C8—N1 1.30 (15)
C2—C1—C6—C5 2.1 (2) C10—N4—C9—N3 −178.06 (13)
N1—C1—C6—C5 −178.12 (13) C10—N4—C9—S1 2.7 (2)
C2—C1—C6—C7 −178.02 (13) N2—N3—C9—N4 1.08 (19)
N1—C1—C6—C7 1.72 (15) N2—N3—C9—S1 −179.58 (10)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N4—H1N4···N2 0.88 (2) 2.27 (2) 2.6416 (18) 105.6 (15)
N4—H1N4···S1i 0.88 (2) 2.70 (2) 3.4972 (13) 152.2 (16)
N3—H1N3···O1 0.86 (2) 2.086 (19) 2.7526 (16) 134.3 (17)
N1—H1N1···O1ii 0.81 (2) 2.01 (2) 2.8161 (16) 175 (2)
C3—H3A···Cg2iii 0.95 2.59 3.38 141

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x−1/2, −y+1/2, −z+2; (iii) x−1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2177).

References

  1. Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o285–o286. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831. [DOI] [PubMed]
  4. Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.
  8. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141–o3142. [DOI] [PMC free article] [PubMed]
  9. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476–o3477. [DOI] [PMC free article] [PubMed]
  10. Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o953–o954. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132. [DOI] [PubMed]
  14. Suryavanshi, J. P. & Pai, N. R. (2006). Ind. J. Chem. Sect. B, 45, 1227–1230.
  15. Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anticancer Agents Med. Chem. 9, 397–414. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007386/zs2177sup1.cif

e-68-0o964-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007386/zs2177Isup2.hkl

e-68-0o964-Isup2.hkl (239.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007386/zs2177Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES