Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1967 Mar;57(3):774–781. doi: 10.1073/pnas.57.3.774

CHARACTERIZATION OF CYTOPLASMIC AND CHLOROPLAST POLYSOMES IN PLANTS: EVIDENCE FOR THREE CLASSES OF RIBOSOMAL RNA IN NATURE*

Erhard Stutz 1,, Hans Noll 1
PMCID: PMC335575  PMID: 16591530

Full text

PDF
774

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAWERMAN G., EISENSTADT J. M. TEMPLATE AND RIBOSOMAL RIBONUCLEIC ACIDS ASSOCIATED WITH THE CHLOROPLASTS AND THE CYTOPLASM OF EUGLENA GRACILIS. J Mol Biol. 1964 Dec;10:403–411. doi: 10.1016/s0022-2836(64)80061-9. [DOI] [PubMed] [Google Scholar]
  2. Boardman N. K., Francki R. I., Wildman S. G. Protein synthesis by cell-free extracts of tobacco leaves. 3. Comparison of the physical properties and protein synthesizing activities of 70 s chloroplast and 80 s cytoplasmic ribosomes. J Mol Biol. 1966 Jun;17(2):470–487. doi: 10.1016/s0022-2836(66)80157-2. [DOI] [PubMed] [Google Scholar]
  3. CLARK M. F., MATTHEWS R. E., RALPH R. K. RIBOSOMES AND POLYRIBOSOMES IN BRASSICA PEKINENSIS. Biochim Biophys Acta. 1964 Oct 16;91:289–304. doi: 10.1016/0926-6550(64)90253-1. [DOI] [PubMed] [Google Scholar]
  4. CLARK M. F. POLYRIBOSOMES FROM CHLOROPLASTS. Biochim Biophys Acta. 1964 Dec 16;91:671–674. doi: 10.1016/0926-6550(64)90025-8. [DOI] [PubMed] [Google Scholar]
  5. Click R. E., Hackett D. P. Evidence that the two ribosomal RNA species of plant tissue are synthesized on different genetic loci. J Mol Biol. 1966 May;17(1):279–284. doi: 10.1016/s0022-2836(66)80108-0. [DOI] [PubMed] [Google Scholar]
  6. GIBOR A., GRANICK S. PLASTIDS AND MITOCHONDRIA: INHERITABLE SYSTEMS. Science. 1964 Aug 14;145(3633):890–897. doi: 10.1126/science.145.3635.890. [DOI] [PubMed] [Google Scholar]
  7. GIERER A. Function of aggregated reticulocyte ribosomes in protein synthesis. J Mol Biol. 1963 Feb;6:148–157. doi: 10.1016/s0022-2836(63)80131-x. [DOI] [PubMed] [Google Scholar]
  8. GIERER A. Vergleichende Untersuchungen an hochmolekularer Ribosenucleinsäure. Z Naturforsch B. 1958 Dec;13B(12):788–792. [PubMed] [Google Scholar]
  9. LYTTLETON J. W. Isolation of ribosomes from spinach chloroplasts. Exp Cell Res. 1962 Mar;26:312–317. doi: 10.1016/0014-4827(62)90183-0. [DOI] [PubMed] [Google Scholar]
  10. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  11. Margulies M. M. Effect of Chloramphenicol on Light-Dependent Synthesis of Proteins and Enzymes of Leaves and Chloroplasts of Phaseolus vulgaris. Plant Physiol. 1964 Jul;39(4):579–585. doi: 10.1104/pp.39.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Parthier B. Chloramphenicol-Wirkung auf eine durch Licht stimulierte Proteinsynthesis in Blättern und in isolierten Chloroplasten. Z Naturforsch B. 1965 Dec;20(12):1191–1197. [PubMed] [Google Scholar]
  13. TAYLOR M. M., STORCK R. UNIQUENESS OF BACTERIAL RIBOSOMES. Proc Natl Acad Sci U S A. 1964 Oct;52:958–965. doi: 10.1073/pnas.52.4.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES