Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1967 Jul;58(1):268–273. doi: 10.1073/pnas.58.1.268

Distinction between the active sites of acetylcholine-receptor and acetylcholinesterase.

T R Podleski
PMCID: PMC335628  PMID: 5231607

Full text

PDF
268

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER J., WILSON I. B., KITZ R. The reactivation of acetylcholinesterase after inhibition by methanesulfonic acid esters. J Biol Chem. 1963 Feb;238:741–744. [PubMed] [Google Scholar]
  2. Changeux J. P. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol Pharmacol. 1966 Sep;2(5):369–392. [PubMed] [Google Scholar]
  3. FUNKE A., BAGOT J., DEPIERRE F. Anticholinestérasiques. I. Synthèse de diphénoxyalcanes porteurs d'une ou deux fonctions phénoliques libres. C R Hebd Seances Acad Sci. 1954 Jul 19;239(3):329–331. [PubMed] [Google Scholar]
  4. HIGMAN H. B., PODLESKI T. R., BARTELS E. APPARENT DISSOCIATION CONSTANTS BETWEEN CARBAMYLCHOLINE, DELTA-TUBOCURARINE AND THE RECEPTOR. Biochim Biophys Acta. 1963 Sep 24;75:187–193. doi: 10.1016/0006-3002(63)90597-3. [DOI] [PubMed] [Google Scholar]
  5. KITZ R., WILSON I. B. Acceleration of the rate of reaction of methanesulfonyl fluoride and acetylcholinesterase by substituted ammonium ions. J Biol Chem. 1963 Feb;238:745–748. [PubMed] [Google Scholar]
  6. KRUPKA R. M. ACETYLCHOLINESTERASE: STRUCTURAL REQUIREMENTS FOR BLOCKING DEACETYLATION. Biochemistry. 1965 Mar;4:429–435. doi: 10.1021/bi00879a008. [DOI] [PubMed] [Google Scholar]
  7. Leuzinger W., Baker A. L. Acetylcholinesterase, I. Large-scale purification, homogeneity, and amino Acid analysis. Proc Natl Acad Sci U S A. 1967 Feb;57(2):446–451. doi: 10.1073/pnas.57.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  9. NACHMANSOHN D., WILSON I. B. The enzymic hydrolysis and synthesis of acetylcholine. Adv Enzymol Relat Subj Biochem. 1951;12:259–339. doi: 10.1002/9780470122570.ch5. [DOI] [PubMed] [Google Scholar]
  10. Podleski T. R., Nachmansohn D. Similarities between active sites of acetylcholine receptor and acetylcholinesterase tested with quinolinium ions. Proc Natl Acad Sci U S A. 1966 Sep;56(3):1034–1039. doi: 10.1073/pnas.56.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prince A. K. Spectrophotometric study of the acetylcholinesterase-catalyzed hydrolysis of 1-methyl-acetoxyquinolinium iodides. Arch Biochem Biophys. 1966 Jan;113(1):195–204. doi: 10.1016/0003-9861(66)90174-3. [DOI] [PubMed] [Google Scholar]
  12. WILSON I. B., ALEXANDER J. Acetylcholinesterase: reversible inhibitors, substrate inhibition. J Biol Chem. 1962 Apr;237:1323–1326. [PubMed] [Google Scholar]
  13. WILSON I. B., QUAN C. Acetylcholinesterase studies on molecular complementariness. Arch Biochem Biophys. 1958 Jan;73(1):131–143. doi: 10.1016/0003-9861(58)90248-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES